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ABSTRACT

Objectives We investigated machine learning based identification of pre-symptomatic COVID-

19 and detection of infection-related changes in physiology using a wearable device (the Ava 

bracelet). 

Design Prospective cohort study.

Setting, participants and interventions Participants from a national cohort study in 

Liechtenstein were included in the current study. Nightly they wore the fertility bracelet that 

measured heart rate, respiratory rate, skin perfusion, heart rate variability and wrist-skin 

temperature. SARS-CoV-2 infection was diagnosed by molecular and/or serological assays. 

Results A total of 1.5 million hours of physiological data were recorded from 1163 participants 

(mean age 44 +/- 5.5 years). COVID-19 was confirmed in 127 participants. Of these, 66 (52%) 

had worn their device from baseline to symptom onset and were included in the analysis with 

long short-term memory (LSTM) based recurrent neural networks (RNN). Multi-level 

modelling revealed significantly different values of physiological parameters in the pre- versus 

the post-symptomatic phase. The developed RNN algorithm had a recall of 0.73 in the training 

set and 0.68 in the testing set when detecting COVID-19 up to two days prior to symptom 

onset.

Conclusion Our proposed RNN algorithm identified 68% of COVID-19 positive participants two 

days prior to symptom onset. Wearable sensor technology can therefore enable COVID-19’ 

detection during the pre-symptomatic period.

Trial registration ISRCTN - ISRCTN51255782: Can the Ava fertility tracker device detect early 
signs of COVID-19?
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Strengths and limitations of this study

- Large sample size from a well-characterized and healthy national cohort. 

- Wearable device technology combined with machine learning to monitor health 

parameters related to early detection of COVID-19 infections. 

- Solely data from laboratory confirmed COVID-19 infections were used.

- Data from one single study centre may limit the generalizability of our findings. 

- Small subsample of COVID-19 positive cases with sufficient high-quality data. 
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INTRODUCTION

One of the primary ways of controlling the spread of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) has involved the identification, tracing and isolation programs 

implemented by multiple countries globally [1]. In the current environment of variant SARS-

CoV-2 strains, vaccine rollouts and searches for alternatives to quarantine, reverse 

transcription polymerase chain reaction (RT-PCR) and serological testing, surveys, 

temperature measurements, and symptom checks (e.g., fever) are used to identify patients 

with COVID-19 [2]. However, these methods are usually unable to identify pre-symptomatic 

or asymptomatic individuals.

Recent studies highlighted the need to identify potential cases prior to symptom onset to 

prevent virus transmission [2,3]. Commonly reported COVID-19 symptoms include fever, 

cough, chest tightness or difficulty breathing, fatigue, dyspnoea, myalgia, sputum production, 

headache, and gastrointestinal symptoms [4,5]. While molecular tests continue to be used to 

confirm infections, the logistics and costs of repeat or continuous testing across populations 

are prohibitive [6]. Recently, scientists have called for further research investigating whether 

wearable medical devices such as the Ava Fertility Tracker and direct-to-consumer products 

such as Fitbit [7], smartwatches [8] and other activity trackers [9] could be used for such 

surveillance [10] These devices can continuously monitor baseline temperature, heart rate, 

sleep duration, and/or activity levels, and subtle changes in these parameters could be used 

to indicate a potential infection.

Here, we aimed to assess the use of an existing, regulated wearable medical device (Ava 

Fertility Tracker) to evaluate COVID-19-related changes in various physiological parameters 

across four infection-related periods: incubation, pre-symptomatic, symptomatic, and 

recovery period. To our knowledge, this is the first prospective study of its kind that measures 

physiological changes in heart rate (HR), respiratory rate (RR), heart rate variability (HRV), 

wrist-skin temperature (WST), and skin perfusion to develop an algorithm to detect a pre-

symptomatic COVID-19 infection. 
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MATERIALS AND METHODS

Study Design and Participants

All participants in the ongoing observational population-based prospective cohort study GAPP 

(Genetic and Phenotypic Determinants of Blood Pressure and Other Cardiovascular Risk 

Factors; n = 2170) in the Principality of Liechtenstein were invited to participate in the current 

study (COVI-GAPP) [11]. Since its inception in 2010, the GAPP study aims to better understand 

the development of cardiovascular risk factors in the general population (i.e., healthy adults 

aged 25 to 41 years) [12]. The only exclusion criterion with regard to participation in the COVI-

GAPP study was not providing written informed consent. The first COVI-GAPP participants 

were enrolled in April 2020, and data used for this interim analysis were collected through 

March 2021 (n = 1163). The local ethics committee approved the study protocol, and written 

informed consent was obtained from each participant (BASEC 2020-00786).

Bracelet, App, and Participant Compliance

The Ava Fertility Tracker (version 2.0; Ava AG, Zurich, Switzerland) is an FDA-cleared and CE-

certified fertility aid bracelet that complies with international regulatory requirements and 

applicable standards [13,14]. The wrist-worn tracker consists of three sensors that measure 

five physiological parameters simultaneously: HR, RR, HRV, WST, and skin perfusion (Figure 

S1). Although the bracelet measures multiple forms of HRV, we chose to focus on two time- 

and one frequency-dependent measurements: standard deviation of the normal-to normal 

interval (SDNN); root mean square of successive differences (RMSSD); and HRV ratio, 

respectively (see Supplementary Materials for more details of HRV measurements and 

rationale). Besides the physiological parameters of interest, the Ava device also measures 

sleep quantity (duration) and sleep quality via a built-in accelerometer. Prior studies have 

demonstrated how data from the device can inform a machine learning algorithm that detects 

ovulating women’s most fertile days in real time with 90% accuracy [15]. Worn only while 

asleep, the bracelet saves data every 10 s and requires at least four hours of relatively 

uninterrupted sleep. The participant syncs their bracelet with a complementary smartphone 

app upon waking, transferring data from the device to Ava’s backend system. 

For COVI-GAPP’s purposes, the app had a customized user functionality developed by the 

manufacturer. Participants could still see and monitor changes in physiological parameters in 

the app; however, they did not receive any messages or algorithm-driven interpretations of 
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their data (Figure 1A). Instead of answering fertility-related questions in-app, participants 

entered information related to behaviours that may have interfered with the physiological 

parameters of interest (e.g., alcohol, medication and drug intake, as such substances can alter 

central nervous system functioning; Figure 1B) [16]. The Daily Diary, as part of the custom app, 

enabled participants to record COVID-19-related symptoms, including chills, diarrhoea, dry 

cough, fatigue, fever, loss of smell, loss of taste, muscle or body aches and pains, nasal 

congestion or runny nose, shortness of breath or difficulty breathing, sore throat, vomiting 

(Figure 1C). To ensure the highest quality data possible, the study team reviewed a weekly 

compliance log; it indicated which participants had synced their bracelets with the app during 

the preceding week [17]. The study team followed-up with participants individually to mitigate 

operational challenges or log-in issues.

SARS-CoV-2 Antibody Testing and RT-PCR Testing

SARS-CoV-2 antibody tests were assessed at baseline (starting April 2020) and during follow-

up (starting December 2020) by the medical laboratory Dr Risch Ostschweiz AG (Buchs SG, 

Switzerland) with an orthogonal test algorithm employing electrochemiluminescence (ECLIA) 

assays testing for pan-immunoglobulins directed against the N antigen and the receptor 

binding domain (RBD) of the SARS-CoV-2 spike protein, as described elsewhere [18]. 

Seroconversion was assumed if the first blood sample was negative for SARS-CoV-2 

antibodies, but the second sample was positive.

If participants had any symptom during the study period, they were asked to go to the 

Liechtenstein national testing facility, which was open seven days per week. The centre 

allowed for higher testing frequencies than other European countries.19 RT-PCR was 

performed either on a COBAS 6800 platform (Roche Diagnostics, Rotkreuz, Switzerland) or 

with the TaqPath assay on a QuantStudio 5 platform (Thermo Fisher Scientific, Allschwil, 

Switzerland), as described elsewhere [19–21]. Participants diagnosed with COVID-19 

contacted the study team to discuss their symptoms and health status. Additionally, 

participants provided their date of symptom onset (SO) and overall symptom duration, 

enabling us to calculate a symptom end (SE) date.

Questionnaires

At the second antibody test, all participants were asked to complete a questionnaire providing 

personal information (age, sex), smoking status (current, past, never), blood group (A, B, AB, 
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O, unknown), number of children, living with household contacts who have tested positive for 

COVID-19, working with people who have tested positive for COVID-19, and vaccination 

status. We calculated body mass index (BMI) based on height and weights collected from the 

GAPP database.

Patient and Public Involvement (PPI)

Well characterized participants of the observational GAPP study were asked about their 

willingness to participate in this sub-study COVI-GAPP. Participants wore the bracelet 

overnight, answered questionnaires about symptoms and confounders and contributed 

blood for serological analyses. Periodically send video messages to all study participants as 

well as content and news about the study on the homepage (covi-gapp.li) ensured public 

and patient involvement. Any specific questions or concerns were directly addressed to the 

study team.

Statistical Analysis

Primary objective was to determine if different physiological parameters deviate from 

baseline during COVID-19 infection. Secondary, this information was used to develop a model 

predicting COVID-19 infection before symptom onset. To evaluate whether HR, RR, HRV, WST, 

and skin perfusion deviated from baseline measurements during the four infection-related 

periods, we categorized the daily parameter measurements as occurring at baseline if the day 

(d) was more than 10 days prior to symptom onset (SO; i.e., d > SO-10), the incubation period 

as SO-10 ≤ d < SO-2, and the pre-symptomatic period as SO-2 ≤ d < SO. Because participants’ 

reported symptom durations varied, the measurements were categorized into the 

symptomatic infection category if SO ≤ d ≤ SE. Finally, parameters collected after symptom 

end (SE) were classified as being in the recovery period (i.e., d > SE). 

Development of a Machine Learning Algorithm for Detecting Pre-Symptomatic COVID-19 

Infection

We chose a recurrent neural network (RNN) with long short-term memory (LSTM) cells for the 

binary classification of an individual as healthy or infected (positive for COVID-19) on a given 

day. LSTM networks had proven highly accurate recognition of time series patterns and events 

across large datasets [22]. Its internal structure can memorize states and easily fetch or 

activate them even if they are created many epochs ago. The LSTM network we implemented 
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consisted of two hidden layers with 16 and 64 cells (Figure 2). Its output activation was a 

sigmoid function, while the recurrent activation was a hyperbolic tangent (tanh) function. The 

output was limited to the range between 0 and 1 to ensure that the model yields an overall 

probability of infection on a given day. Whenever this probability exceeded 0.5, a potential 

COVID-19 infection was indicated.

1. Data processing and multi-level model specification

We performed all data processing and analysis using R (v3.6.1) and Python (v3.6). After initial 

pre-processing of the data to remove potential artifacts and consistent with best practices 

[23] (see Supplementary Materials for detailed description), we ran a series of multi-level 

models with random intercepts and slopes to determine the differences in physiological 

parameters during the infection-related periods compared to baseline. Given our continuous 

criterion, we modelled our outcomes of interest using residual maximum likelihood estimation 

(REML) and Satterthwaite degrees of freedom. Four binary variables were created, indicating 

to which infection period a given measurement belonged (1 = belonging to that period, 0 = 

not belonging to that period). The reference baseline period measurements were encoded as 

0 across all four binary variables. Reported results included the unstandardized regression 

coefficients for each effect. When multiple models were possible for the same parameter, we 

chose the model using the percentile of data (stable maxima) with the best fit (see 

Supplementary Materials). To ensure a family-wise alpha level less than or equal to 0.05, we 

implemented Bonferroni correction for the seven analysed parameters (corrected alpha level 

of p = 0.007) and adjusted how we defined marginal significance accordingly (i.e., 0.007 ≤ p ≤ 

0.05).

2. Data preparation and feature extraction for algorithm development

Because the Ava bracelet records over a million data points per use, we first identified the 

features most predictive of COVID-19. We normalized the night-time WST, RR and HR values 

to prime our model to detect deviations from baseline measurements and ensure greater 

stability in the measurements (e.g., to minimize inter-participant variability). Next, we 

compared the raw features’ predictive performance before engineering novel, composite 

features. We conducted principal component analysis decomposition to test the correlation 

between the day of SO and other binary labelled features (e.g., alcohol consumption). We also 
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examined the correlation between WST and other physiological parameters to determine 

potential autocorrelation prior to model specification.

3. Training process

To limit our analysis to symptomatic COVID-19 cases, participants had to have reported a date 

of SO and recorded at least 28 days of bracelet data prior to that date; the full four weeks of 

data were required to ensure accurate baseline readings and enable the algorithm to account 

for cyclical variations in parameters attributable to monthly hormonal changes. Thus, each 

individual included in the analysis had at least 29 days of consecutive data recorded by the 

bracelet. We partitioned the data into 8-day sequences, enabling the algorithm to compare 

physiological parameters across 8-day windows. This meant that each user had more negative 

(class 0; “healthy” days) sequences in the distribution (e.g., [26, 19], [25, 18] [11, 3]) than 

positive sequences (class 1; “infected” days [e.g., SO-10 to SO-2] as shown in Figure 3). We 

selected a binary cross-entropy loss function for the RNN with a stochastic gradient descent 

(SGD) optimizer. Due to the sample size, we set the learning rate to 0.007 and 2000 epochs 

while also enabling an early stopping mechanism to prevent model overfitting. We trained our 

RNN 10 times, randomly splitting our sample into a training set (70% of participants) and test 

set (30% of participants) for each instance. We report the metrics of the best performing RNN 

model that was selected according to the following recall equation:

overall_recall = ((recall_class_1_train + recal_class_0_train) * 0.7 + (recall_class1_test + recall_class_0_test) * 0.3)/2

Finally, due to the number of COVID-19 cases compared to healthy days in our dataset, we up-

sampled instances of class 1 via duplication such that it was represented in our training set 

1.15 times more than a given negative sequence (i.e., class 0). Thus, the SGD optimizer treated 

the two classes as roughly equal and no longer overweighted the importance of the 

parameters predicting a healthy 8-day period. By training this LSTM model, we sought to 

leverage deep learning to predict the pre-symptomatic onset of COVID-19.

Role of the Funding Source

None of the funders of the study played a role in the study design, data collection, data 

analysis, data interpretation, writing of the report or decision to submit the paper.
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RESULTS

Participants

A total of 1163 participants (mean age = 44.1 years, standard deviation [SD] = 5.6; 667 [57%] 

females) enrolled in the COVI-GAPP study (Figure 4). 127 participants (10.9%; 95% confidence 

interval, CI [9.3,12.8]) contracted COVID-19 during the study period. From these, 11 

participants were hospitalised and three asymptomatic infected. As seen in Table 1, there 

were no differences in the sex ratio, age, BMI, or smoking status between individuals who did 

or did not test positive for COVID-19 during follow-up (all p values ≥ 0.30). A significantly 

higher proportion of participants who contracted COVID-19 reported household contacts (n = 

58 of 1036 seronegative participants vs. 53 of 127 seropositive participants; p < 0.001) and/or 

work colleagues who also had COVID-19 (n = 230 of 1036 seronegative participants vs. 49 of 

127 seropositive participants; p < 0.001). On average, COVI-GAPP participants wore the Ava 

bracelet for 1370.8 h over the course of the study (SD = 802.7), for a total of 1,453,006 h. Of 

the 127 participants who tested positive for COVID-19 via either PCR or antibody tests, only 

66 users had worn their bracelet at least 29 days prior to SO what enabled enough data quality. 

From these 66 participants, COVID-19 infection was confirmed by RT-PCR test and SARS-CoV-

2 antibody test (n = 48) or only by antibody test (n = 18).

1. Participants with confirmed COVID-19

Table 2 shows the clinical characteristics of COVID-19 positive participants, stratified according 

to their compliance wearing the bracelet prior to SO. A series of 26 analyses of variance 

(ANOVAs) and chi-square tests with Bonferroni correction revealed only BMI varied 

significantly between the two groups; non-compliant participants had a higher mean BMI 

(25.8 kg/m2, SD = 4.0) than their compliant peers (23.8 kg/m2, SD = 3.7; F(1, 116) = 10.39, p = 

0.002).

2. Compliant participants with confirmed COVID-19

Page 12 of 66

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

11

Among the 66 compliant participants who had COVID-19, 13,248 nights of data were collected 

(mean duration = 200 nights, SD = 47; range 72–284 nights) for a total of 124,079 h (mean 

hours per participant = 1880, SD = 461.8). Compliant participants had a mean age of 42.9 years 

(SD = 5.6), and most had never smoked (n = 57; 86%). Their COVID-19 symptoms lasted for an 

average of 8.5 days (SD = 5.0; range 1–25 days). Table 2 documents the frequency of their self-

reported symptoms.

Physiological Changes During the Clinical Course of COVID-19

Employing multi-level modelling, we observed significant changes in five (RR, HR, HRV, HRV 

ratio and WST) of the seven device-measured physiological parameters during the pre-

symptomatic, symptomatic, and recovery periods of COVID-19 compared to baseline. Table 3 

provides the unstandardized coefficient values for each statistical model. The complete 

courses of the different physiological parameters are shown in Figure 5. Additional 

information about the intraclass correlation coefficients, including the relative residual 

variance explained by participant grouping, can be found in S2.

1. Respiration rate

COVID-19 positive participants had a significantly higher RR during the symptomatic period 

than at baseline (  = 15.1 breaths/min, standard error [s.e.] = 0.26; p <0.0001); 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

controlling for intra-individual variance, nightly RR increased by 1.0 breaths/min (s.e. = 0.18; 

p <0.0001). There were no significant differences in RR detected between baseline and other 

periods (all p’s ≥ 0.114).

2. Heart rate

At baseline, participants had a resting nightly HR of 55.4 beats per minute (bpm; s.e. = 0.83; p 

< 0.0001). During the incubation period, individuals’ HR increased significantly by 0.87 bpm 

(s.e. = 0.29; p = 0.004). HR remained elevated in the pre-symptomatic period, expected to be 

1.0 bpm higher than during baseline (s.e. = 0.36, p = 0.007). HR continued to increase following 

SO, beating 2.2 bpm faster than at baseline (s.e. = 0.48, p < 0.0001). Finally, even after SE, 

participants had a significantly elevated HR (+0.87 bpm higher than baseline; s.e. = 0.22, p = 

0.0002).
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3. Heart rate variability: standard deviation of the NN interval

Compared to a baseline SDNN of 59.6 ms (s.e. = 1.4, p < 0.0001), participants had marginally 

significantly decreased SDNN in the incubation ( = −1.5 ms, s.e. = 0.59; p = 0.0149), 𝛽𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 

pre-symptomatic ( = −1.7 ms, s.e. = 64; p = 0.0086), and symptomatic (𝛽𝑝𝑟𝑒 ― 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

 = −1.4 ms, s.e. = 0.73; p = 0.0499) periods. Following SE, SDNN returned to 𝛽𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 

baseline levels ( = −0.9ms, s.e. = 0.51; p = 0.0787).𝛽𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 

4. Heart rate variability: root mean square of successive differences 

Our analyses did not reveal any significant phase-based differences in RMSSD for COVID-19 

positive participants during their infection (all p’s ≥ 157) compared to baseline (  = 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

43.7 ms, s.e. = 1.2; p ≤ 0.0001).

5. Heart rate variability ratio

As with SDNN, multi-level analysis revealed a marginally significant decreases in HRV ratio 

during the incubation ( = −0.01, s.e. = 0.01; p = 0.0361) and pre-symptomatic periods 𝛽𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 

(  = −0.02, s.e. = −0.01; p = 0.0165) compared to baseline (  = 0.50, 𝛽𝑝𝑟𝑒 ― 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

s.e. = 0.02; p < 0.0001). No significant difference in HRV ratio emerged between baseline and 

either the symptomatic or recovery period (all p’s ≥ 0.5474).

6. Wrist skin temperature

Over and above participant level variance, WST increased by 0.13 °C (s.e. = 0.04; p = 0.001), 

0.18 °C (s.e. = 0.05; p = 0.001) and 0.3 °C (s.e. = 0.05; p < 0.0001) during the incubation, pre-

symptomatic and symptomatic periods, respectively, compared to baseline ( = 35.3 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

°C, s.e. = 0.06; p < 0.0001). WST remained elevated by 0.2 °C relative to baseline even during 

the recovery period (s.e. = 0.03; p < 0.0001).

7. Skin perfusion

No changes in skin perfusion were observed when comparing measurements during infection 

(all p’s ≥ 339) with baseline values (  = −0.01, s.e. = 0.0; p < 0001).𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
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Model Specification and Algorithm Performance

The best performing RNN consisted of composite features derived from the maximum nightly 

WST and median nightly RR averaged across the preceding three nights window. The other 

parameters dropped out. Table 4 summarizes the model performance metrics across the 

training and test samples. In the test set, the algorithm was able to detect 68% of COVID-19 

cases two days prior to SO. 

DISCUSSION

Our main objective was to assess the use of existing medical-grade technology in the early 

detection of changes in physiological parameters related to COVID-19, facilitating the early 

isolation and testing of potentially affected individuals to limit the spread of the SARS-CoV-2 

virus. Our RNN algorithm, trained and tested using a 70:30 split, identified 68% of COVID-19 

cases up to two days before SO in 66 participants with an accurate false-positive rate and 

laboratory-confirmed cases of SARS-CoV-2. We therefore demonstrated that a wearable 

sensor bracelet implemented alongside a machine learning model has the potential to detect 

COVID-19 infections prior to SO.

Our research constitutes one of the first prospective cohort studies using wearable sensor 

technology to gather real-time continuous physiological data upon which a machine learning 

algorithm for COVID-19’s pre-symptomatic detection was trained. Compared to previous 

studies evaluating the use of different wearable devices and machine learning to identify 

COVID-19 infections based on self-reported COVID-19 infections [7–9,24–28] only laboratory-

confirmed SARS-CoV-2 infections were used in this study. Mishra et al. [8], for example, 

evaluated the use of resting HR data from 32 infected Fitbit users to detect COVID-19 cases in 

real time and identified 62.5% of the cases before SO. Similarly, Miller et al. [24] used RR, HR, 

and HRV data from 271 WHOOP strap wearers to identify 20% of the participants who 

developed COVID-19 before SO and 80% by day three after SO. Our RNN algorithm detected 

68% of laboratory-confirmed cases before SO, with additional statistical analyses revealing 

significant changes in WST, HR and HRV across the disease trajectory. Furthermore, our 
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algorithm included more concurrent physiological parameters than previous studies, such as 

nightly WST, RR, and cardiac data [7,8,24,29]. Unlike studies that performed retrospective 

measurements, our system was able to detect infections before SO. Uniquely, our research 

repurposed a previously existing CE-marked medical device for a novel purpose, illustrating a 

relatively inexpensive technique to detect pre-symptomatic COVID-19.

Our findings therefore suggest a wearable-informed machine learning algorithm may serve as 

a promising tool for pre- or asymptomatic detection of COVID-19. Based on this interim 

analysis, a 20,000-person RCT is currently underway to test the RNN algorithm’s real-time 

efficacy; participants see and can act on real-time machine learning driven alerts about their 

likelihood of having a COVID-19 infection, ahead of when they may report symptoms [30]. 

Initial results from this larger prospective randomized, single-blinded crossover trial are 

expected in December 2022.

Strengths of our study include its population-based design and recruitment from a well-

defined, well-characterized healthy cohort. A small subsample of COVID-19 positive users with 

sufficient high-quality data (wearing the bracelet ≥ 28 days prior to SO), reliance on data from 

a single national centre and the lack of ethnic diversity may limit the generalizability of our 

findings. Additionally, we could not exclude imprecision or misclassification errors related to 

which symptoms were experienced, dates of SO, and/or SE. As a final limitation, our defined 

model was not validated on a novel sample; however, a follow-up study currently underway 

will address this concern [30].

Overall, the COVI-GAPP study shows that pre-symptomatic detection of COVID-19-related 

changes in physiological parameters with a sensor bracelet is feasible. We found significant 

changes in WST, HR, and HRV occurring in COVID-19 positive patients during the pre-

symptomatic period compared to wearable-detected baseline measurements, over and above 

the effects of intrapersonal variability. A novel machine learning algorithm detected 68% of 

laboratory-confirmed SARS-CoV-2 infections two days before SO. Wearable sensor technology 

represents an easy-to-use, low-cost method for enabling individuals to track their health and 

well-being during a pandemic. Our research shows how these devices, partnered with artificial 

intelligence, can push the boundaries on personalized medicine and detect illness prior to SO, 

potentially reducing virus transmission in communities. Future research should focus on how 

medical grade wearable sensor technology can aid in combatting the current pandemic by 

monitored sensor data.
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Table 1. Overall participant characteristics stratified according to whether they contracted COVID-19.

* indicates p≤ 0002, significant difference with Bonferroni correction

Variables Total   

n=1163

COVID-19 

n=127

No COVID-19

 n=1036

Test 

Statistic

Significance 

(p value)

Sex ratio (F:M) 667:494 74:53 594:441 (4)=040𝜒2 0982

Mean age, years (SD) 4408 (557) 4366 (564) 4414 (556) F(1, 

1071)=059

0444

BMI, kg/m2 (SD) 2472 (397) 2474 (400) 2472 (397) F(1, 

1071)=002

090

Smoking status, N 
(never: current: past 

smoker)

654:110:102 93:10:12 561:100:90 (2)=238𝜒2 0304

N of household 
contacts with 
COVID-19

111 53 58 (1)=12794𝜒2 <00001*

N of work colleagues 
with COVID-19 

279 49 230 (3)=273𝜒2 <00001*

Page 23 of 66

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

22

Table 2. Clinical characteristics of participants who contracted COVID-19 stratified according to whether 
they did (compliant group) or did not (non-compliant group) wear the bracelet regularly.

Variables (n) Compliant 
group (n=66)

Non-compliant 
group (n=61)

Test statistic Significance 

(p value)

Sex ratio (F:M) 45:21 29:32 (1)=474𝜒2 0030

Mean age, years (SD) 4288 (559) 4454 (560) F(1, 116)=285 0094

BMI, kg/m² (SD) 2375 (369) 2581 (406) F(1, 116)=1039 0002*

Hospitalization rate 3 7 (1)=064𝜒2 0425

Smoking status, N
(never: current: past 
smoker)

57:4:5 36:6:7 (2)=303𝜒2 022

N of household 
contacts with COVID-
19

35 18 (1)=239𝜒2 0123

N of work colleagues 
with COVID-19

28 21 (1)=0𝜒2 1

COVID-19 symptoms:

Fever 17 23 (1)=089𝜒2 0344

Chills 14 11 (1)=062𝜒2 0432

Cough 26 30 (1)=025𝜒2 0616

Runny nose 26 25 (1)=001𝜒2 0938

Difficulty breathing 11 10 (1)=039𝜒2 0530

Loss of the sense of 
smell

26 24 (1)=037𝜒2 0543

Loss of the sense of 
taste

20 22 (1)=002𝜒2 0896

Chest pressure 7 10 (1)=022𝜒2 0636

Sore throat 18 19 (1)=000𝜒2 1

Muscle pain 27 32 (1)=029𝜒2 0593

Headache 44 29 (1)=788𝜒2 0005

Fatigue 27 38 (1)=224𝜒2 0135
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Variables (n) Compliant 
group (n=66)

Non-compliant 
group (n=61)

Test statistic Significance 

(p value)

Malaise 19 25 (1)=018𝜒2 0670

Diarrhoea 13 13 (1)=002𝜒2 0896

Sickness 9 5 (1)=129𝜒2 0256

Vomiting 1 5 (1)=189𝜒2 0169

Hospitalization 3 7 (1)=064𝜒2 0425

Long-term effects of 
COVID-19 (≥10d)

5 15 (1)=569𝜒2 0017

Mean symptom 
duration

854 (510) 1016 (1098) F(1, 116)=131 0254

* indicates p≤ 0002, significant difference with Bonferroni correction
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Table 3. Multi-level linear mixed models reveal the relationship between COVID-19 phases and physiological parameters.

Predictors Wrist skin 
temperature

Heart rate Heart rate 
variability 
(SDNN1)

Heart rate 
variability 
(RMSSD2)

Heart rate 
variability ratio

Respiratory 
rate

Skin perfusion

Intercept 3532† (0.06) 5543† (0.83) 5964† (1.43) 4371† (1.16) 050† (0.02) 1510† (0.26) -001† (000)

COVID-19 phase
Baseline Reference group Reference group Reference group Reference 

group
Reference 
group

Reference 
group

Reference group

Incubation 013† (004) 087† (029) -148* (059) -037 (048) -001* (001) 002 (006) 000 (000)
Pre-
Symptomatic

018† (005) 100† (036) -170* (064) -075 (053) -002* (001) 014 (012) 000 (000)

Symptomatic 030† (005) 215† (048) −145* (073) 012 (051) 000 (001) 100† (018) 000 (000)
Recovery 020† (003) 087† (022) -092 (051) 004 (044) 000 (001) 010 (006) 000 (000)

Unstandardized β -coefficient values reported, with standard errors in brackets.
Note: *, † refer to p< 005, 0007, respectively, with Bonferroni correction.
1SDNN: standard deviation of the NN interval.
2RMSSD: root mean square of successive difference. 
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Table 4. Performance metrics of the algorithm in the detection of COVID-19 two days prior to symptom onset. Class 1 represented an 8-day long training 
instance extracted from day 10 to day 2 before SO. Class 0 represented a training instance extracted from all other 8 days long consecutive measurements 
(e.g., SO-11 to SO-3). The training set consisted of 40 days measurements from 66 participants with 70:30 train-test split. Sensitivity is reflected in the recall 
of class 1, while specificity is determined by the recall of class 0.

Sample Class Precision Recall F-Score
0 0.60 0.45 0.51

Training Set
1 0.60 0.73 0.66
0 0.50 0.36 0.42

Test Set
1 0.54 0.68 0.60
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Figure Legend 

Figure 1. 

COVI-GAPP participants (n=1163) wore a certified medical device at night while they slept, 

syncing it to a complementary smartphone application upon waking. The device and app were 

originally designed for fertility tracking in naturally menstruating women but adapted for the 

purposes of this study. Instead of real-time fertility indications, participants saw “Fertility 

Unknown” upon syncing (A). Additionally, the in-app Daily Diary asked participants about 

potential confounds (B) and COVID-19 symptoms (C) rather than fertility-related questions.

Figure 2.

Recurrent Neural Network (RNN) architecture for the detection of a pre-symptomatic case of 

COVID-19. The RNN consisted of two hidden layers and one output layer. The first hidden layer 

contained 16 and second layer contained 64 long short-term memory (LSTM) units. The LSTM 

output activation was a sigmoid function, while the recurrent activation on hidden layers was 

the ReLU (Rectified Linear Unit) function. The input of RNN was 8 consecutive values of 

physiological signal originating from 8 consecutive nights of data. The output was an indication 

about the potential COVID-19 infection.

Figure 3. 

Class depiction based on the recurrent neural network (RNN). Here, class 0 represents healthy 

days and class 1 represents the pre-symptomatic phase of COVID-19 (SO-10 to SO-2). Vectors of 

marked classes represent training input for the RNN. 

Figure 4. 

Study flowchart. From 2170 GAPP participants, 1163 participants were enrolled in the COVI-

GAPP study. 127 participants presented laboratory-confirmed COVID-19 disease and from 

these, a total of 66 positive tested participants had complete bracelet data available used for 

the algorithm development. 
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Figure 5. 

The wearable device can detect changes in 5 physiological parameters across the clinical course 

of COVID-19. The values of each physiological parameter (with 95% CIs) collapsed across 

individuals (n=66) were normalized using baseline measurements and are shown centred 

around participant-reported symptom onset (SO).
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Appendix: Full list of the members of the COVID-19 remote early detection (COVID-RED) consortium. 

First name Surname E-mail Organization 

Maureen Cronin maureen.cronin@avawomen.com Ava AG, Gutstrasse 73, 8055 Zürich, Switzerland 

Brianna Goodale brianna.goodale@avawomen.com Ava AG, Gutstrasse 73, 8055 Zürich, Switzerland 

Vladimir Kovacevic vladimir.kovacevic@avawomen.com Ava AG, Gutstrasse 73, 8055 Zürich, Switzerland 

Kirsten Grossmann Kirsten.Grossmann@risch.ch 

Dr Risch Medical Laboratory, Wuhrstrasse 14, 9490 Vaduz, Liechtenstein 

Faculty of Medical Sciences, Private University in the Principality of Liechtenstein, Dorfstrasse 24, 9495 Triesen, Liechtenstein 

Lorenz Risch lorenz.risch@risch.ch 

Dr Risch Medical Laboratory, Wuhrstrasse 14, 9490 Vaduz, Liechtenstein 

Dr Risch Medical Laboratory, Lagerstrasse 30, 9470 Buchs, Switzerland 

Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Inselspital, 3010 Bern, Switzerland  

Martin Risch martin.risch@ksgr.ch 

Central Laboratory, Kantonsspital Graubünden, Loësstrasse 170, 7000 Chur, Switzerland 

Dr Risch Medical Laboratory, Wuhrstrasse 14, 9490 Vaduz, Liechtenstein 
Dr Risch Medical Laboratory, Lagerstrasse 30, 9470 Buchs, Switzerland  

Ornella Weideli Ornella.Weideli@risch.ch Dr Risch Medical Laboratory, Wuhrstrasse 14, 9490 Vaduz, Liechtenstein 

Stefanie Aeschbacher Stefanie.Aeschbacher@usb.ch 
Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, 

Switzerland 

David  Conen  David.Conen@phri.ca Population Health Research Institute, McMaster University, 237 Barton Street East, Hamilton, ON L8L 2X2, Canada 

Regien Stokman regien.stokman@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Billy Franks billy.franks@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Hans Van Dijk hans.vandijk@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Paul Klaver paul.klaver@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Eric Houtman eric.houtman@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Jon Bouwman jon.bouwman@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Kay Hage kay.hage@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Lotte Smets lotte.smets@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Marcel van Willigen marcel.vanwilligen@juliusclinical.com  Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Maui Chodura maui.chodura@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 

Niki de Vink niki.devink@juliusclinical.com Julius Clinical, Broederplein 41-43, 3703 CD Zeist, The Netherlands 
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Supplement to: “Investigation of the use of a sensor bracelet for the pre-

symptomatic detection of COVID-19: a national cohort study (COVI-GAPP)”. 
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Supplementary Material and Methods 

 

Our primary aim was to understand how the coronavirus disease 2019 (COVID-19) affects physiological parameters 

measured by a wearable device and, subsequently, whether these parameter changes could help in detecting a pre-

symptomatic infection. In particular, we investigated how heart rate (HR), respiratory rate (RR), heart rate variability 

(HRV), wrist-skin temperature (WST), and skin perfusion deviated from baseline measurements during four 

infection-related periods: the incubation period, the pre-symptomatic period, symptomatic infection period, and the 

recovery period. We categorized daily parameter measurements as occurring in the baseline period if the day (d) was 

more than 10 days prior to symptom onset (SO; i.e., d>SO-10). Relatedly, we defined the incubation period as SO-

10≤d<SO-2 and the pre-symptomatic period as SO-2≤d<SO. Because participants’ reported symptom duration 

varied, measurements fell into the symptomatic infection category if SO≤d≤SE. Finally, parameters collected after 

symptom end (SE) were classified as in the recovery period (i.e., d>SE).  

 

 

The Wearable Device and Physiological Parameter Specification 

 

The Ava Fertility Tracker (version 20; Ava AG, Switzerland) is an United States Food and Drug Administration 

(FDA) cleared and conformité européenne (CE) certified fertility aid bracelet that complies with international 

regulatory requirements and applicable standards.1,2 The wrist-worn tracker consists of three sensors: a temperature 

sensor; an accelerometer; and a photoplethysmograph (PPG).3 The bracelet saves data every 10 seconds and requires 

at least four hours of relatively uninterrupted sleep to record enough data for pre-processing and analysis. Upon 

waking, the user taps a button in the complementary smartphone app to initiate the previous night’s raw data transfer 

from the bracelet to the system’s backend database via Bluetooth Low Energy (BLE). The data then undergoes pre-

processing according to proprietary manufacturer algorithms to remove potential artifacts, detect the user’s sleep 

stages, and identify nightly physiological parameters. In addition to the algorithm-derived fertility indication, the 

post-processing values for HR, WST, RR, sleep quantity, sleep quality, and HRV ratio are then sent back to the 

complementary app and displayed to the user. The device’s sensors responsible for recording the raw data are 

described in detail below as well as show in Figure S1. 

Built into the Ava bracelet’s internal hardware, the accelerometer detects and records the wearer’s movement in 

three-dimensional space. A proprietary machine learning algorithm ingests nightly movement data to determine sleep 

stages. In addition to reporting the user’s duration of sleep in-app, it also assigns her a nightly sleep quality score 

consisting of the percentage of combined deep and Rapid Eye Movement (REM) sleep. Although other researchers 

have examined COVID-19’s impact on sleep using wearable devices with mixed or inconclusive results4–7, since 

sleep quality and quantity were not among our pre-defined primary objectives we did not analyse results from the 

accelerometer data.  

A temperature sensor constitutes the Ava Fertility Tracker’s second sensor and provided data for evaluating COVID-

19 related changes in wrist skin temperature (WST). Despite the device reading temperature at a distal point 

compared to core body temperature, recent research has demonstrated the bracelet’s ability to continuously measure 

temperature throughout the night results in more sensitive readings than oral point estimates and enables its machine 

learning algorithms to detect more ovulation-related changes in temperature.8 These findings suggest the medical 

grade device’s ability to sense fluctuations in WST related to an infection would similarly benefit from its repeated 

sampling over the course of sleep and may outperform an oral or forehead reading taken only once at point of care 

(POC). Limited evidence conducted early on during the COVID-19 pandemic attests to WST’s potential superior 

usage in detecting infection-based fluctuations; WST for 528 patients read by a noncontact infrared thermometer 

proved more stable and less prone to environmental factors (e.g., walking or bicycling to POC) than tympanic and 

forehead measurements in some contexts. Thus, given prior research on the Ava bracelet’s measurement accuracy 

compared to oral temperature and on WST’s importance in triaging COVID-19 patients, we relied on the device’s 

temperature sensor to provide nightly WST readings for analysing how temperature changes across a symptomatic 

SARS-CoV-2 infection.   

A PPG comprises the Ava bracelet’s final sensor. The PPG sensor employs a light emitting diode (LED) current to 

send infrared light through the user’s skin to detect inter-beat intervals (IBIs). The light reflects off or is absorbed 

by the blood; how much light bounces back to the sensor can signal the wearer’s current cardiac rhythms.9 Based on 

the time cadence for variance in the reflected light, proprietary algorithms can determine the user’s HR, RR, 

Page 39 of 66

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

3 

 

perfusion and IBI; in turn, the IBI can inform calculations for various metrics of HRV. While HR consists of the 

number of heart beats per minute, HRV describes the fluctuation in time intervals between consecutive heartbeats.10 

It can vary in both frequency- and time-domains, resulting in more than 20 possible metrics for quantifying the 

heart’s activity.10 Since examining all HRV metrics would have proven practically and statistically infeasible, we 

focused on two time- and one frequency-domain measurements. The first time-domain measure of HRV, the standard 

deviation of the normal-to-normal interval (SDNN), quantifies sympathetic and parasympathetic nervous system 

activity in ms; it describes how much variability exists in the interval between normal sinus beats.10 A lower SDNN 

corresponds to impaired cardiac health10, with recent research offering conflicting evidence about SDNN’s changes 

in COVID-19 patients. While some studies demonstrated an increase in SDNN among COVID-19 patients11, others 

have found changes in SDNN dependent upon disease severity.12 Regardless of the effect’s direction, we expected 

an individual suffering from COVID-19 would exhibit deviations from their baseline SDNN during an active 

infection and included it in our analyses. A second time-domain measurement of HRV, the root mean square of 

successive differences (RMSSD), examines the variability between normal heartbeats. Increased RMSSD has 

previously been shown to be associated with severe infection, including septic shock and COVID-19.11,13 Thus, we 

focused on RMSSD changes across the incubation, pre-symptomatic, symptomatic and recovery phases compared 

to participants’ baseline measurements in our analysis. The final HRV parameter we examined, the HRV ratio, 

constitutes a frequency-domain measurement; it indicates the ratio of HR oscillations in the low-frequency (LF; 

004-015 Hertz [Hz]) to those in the high-frequency (HF; 015-04 Hz) bands10,14. Patients with severe COVID-19 

infection have exhibited a higher HRV ratio than mildly infected participants12, leading us to examine this 

physiological parameter in our analyses.  

 

 

Data Processing and Multi-level Model Specification 

We performed all data processing and analysis using R (R Core Team, v36115) and Python (Python Software 

Foundation, v3616). In keeping with data cleaning practices described by the manufacturer in previous publications,3 

we excluded the first 90 and the last 30 minutes of data from each night a priori from our analysis; transitions from 

waking to sleeping and vice versa can result in greater variation in physiological parameters measured by the Ava 

bracelet, thereby leading to less stable readings. To further reduce artificial fluctuations in the data due to potential 

measurement error and consistent with best practices17, each physiological parameter underwent locally estimated 

scatterplot smoothing (LOESS) prior to analysis. 

Next, we ran a series of multi-level models with random intercepts and random slopes to determine differences in 

physiological parameters during the infection-related periods compared to baseline, accounting for the nesting of 

repeated measurements during an infection period and within an individual. Given our continuous criterion, we used 

the “lme” function with residual maximum likelihood estimation (REML) and Satterthwaite degrees of freedom in 

the open-source R packages “lme4”18, “lmerTest”19, and “optimx”20 to model our outcomes of interest. Four dummy-

coded variables were created, indicating to which infection period a given measurement belonged (1= Belonging to 

that Period, 0=Not belonging to that period). The reference baseline period measurements were encoded as 0 across 

all four dummy variables. Our reported results include the unstandardized regression coefficients for each effect. 

When multiple models were possible for the same parameter, we chose the model using the percentile of data (stable 

maxima) with the best fit; we determined best fit by comparing the two models using an analysis of variance 

(ANOVA) test and selecting the model with the significantly lower Akaike Information Criterion (AIC). In instances 

where the models were not significantly different from each other, we chose the model that included more data (e.g., 

the 99% percentile of data versus the 90th percentile).  

In an effort to provide some context for the magnitude of our significant effects, we report the intraclass correlation 

coefficient (ICC) for each of the null models associated with changes in physiological parameters over the course of 

a COVID-19 infection. The ICC indicates how much variance in an outcome occurs due to between group 

differences21–23; in the context of the current study, the ICC presents a picture of how a given physiological parameter 

varies due to participant-level characteristics versus the within-subject course of a COVID-19 infection. 

To ensure a family-wise alpha level less than or equal to 05, we implemented a Bonferroni correction for the seven 

total parameters we analyzed and evaluated effect significance using this new level of p=007. We adjusted how we 

defined marginal significance accordingly (i.e., 007≤p≤05). We used the Bonferroni-corrected significance level 

throughout the paper.  
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Supplementary Results 

 
The ICCs and random effects variance estimates for each of the seven multi-level models can be found in Table S1. 

In brief, most physiological parameters had high levels of variance which could be attributed to between participant 

differences rather than within subject changes due to COVID-19 infection.  

For most physiological parameters, observed variance in the outcome resulted largely from a participant’s own 

stability in readings over time. All cardiac parameters showed similar ICCs, ranging from 071 (RMSSD) to 077 

(SDNN); this means that, depending on the parameter, 71-77% of the variance in outcome was due to between 

participant differences. Regardless of infection phase, a given participant’s nightly cardiac measurements were more 

similar to one another than random chance. RR showed an even higher ICC; 88% of all observed variance in RR 

was attributable to between participant differences. A maximum of 22% of variance could be due to within 

participant changes. The multi-level model testing the effect of infection phase on nightly RR reveals only a 

significant difference between the symptomatic period and baseline (see Table 3); all other phases do not differ 

significantly from baseline, illustrating the lack of overall variability due to a COVID-19 infection and emphasizing 

RR’s stability over time within an individual participant. 

On the other end of the spectrum, only wrist skin temperature and perfusion had low ICC’s (001 and 005, 

respectively); said differently, a given participant’s perfusion or temperature measurements over time were not more 

similar to each other than would be expected from a random selection of that same parameter across all participants. 

As perfusion did not show phase-based changes in COVID-19 infection (see Table 3), it may be that another 

unaccounted for factor contributes to outcome measurements. Neither the participant’s own repeated measurements 

nor the disease trajectory appear to significantly influence a given night’s perfusion data. In contrast, since wrist skin 

temperature significantly differed from baseline across all other phases of a COVID-19 infection (see Table 3), it 

appears that the disease itself contributes more to a given night’s temperature readings than the stability in a 

participant’s own repeated measurements; almost all of the observed variance in nightly skin temperature occurs due 

to within participant differences (e.g., changes in their physiology over the course of the infection). Examining ICC 

values for each physiological parameter of interest provides greater context into the relative effect of potential phase-

based changes in outcome variables as well as the residual variance attributable to the participant themselves. 

 
 

Supplementary Tables and Figures 

 
Supplementary Table S1. Intraclass correlation coefficients (ICCs) calculated based on the variance estimates for 

random effects of the null models predicting each of the seven physiological parameters of interest. 

 

Predictors 
Between Participant 

Variance (SD) 

Variance of the 

Residuals (SD) 
ICC 

Wrist Skin Temperature 034 (059) 3565 (597) 001 

Heart Rate 4359 (660) 1353 (368) 076 

Heart Rate Variability (SDNN) 12164 (1103) 3608 (608) 077 

Heart Rate Variability (RMSSD) 8208 (906) 3379 (581) 071 

Heart Rate Variability Ratio 116 (108) 040 (063) 074 

Respiratory Rate 448 (212) 064 (080) 088 

Skin perfusion 38 e-05 (001) 675 e-04 (003) 005 
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Supplementary Figure S1. The Ava Fertility Tracker contains three sensors (temperature, accelerometer and 

photoplethysmograph) that measure wrist skin temperature, heart rate, respiratory rate, heart rate variability and 

skin perfusion simultaneously.  

 

 

 

Study protocol  

 
The study protocol can be downloaded here. 
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GLOSSARY OF ABBREVATIONS 

 

AE Adverse Event 

ASR/DSUR Annual Safety Repot / Development Safety Report 

BASEC Business Administration System for Ethical Committees 

CRF Case Report Form 

CTCAE Common Terminology Criteria for Adverse Events 

FADP Federal Act on Data Protection (in German: DSG, in French: LPD, in Italian: LPD) 

eCRF electronic Case Report Form 

FOPH Federal Office of Public Health 

GCP Good Clinical Practice 

HRA Human Research Act (in German: HFG, in French: LRH, in Italian: LRUm) 

ICH International Conference on Harmonisation  

ClinO Ordinance on Clinical Trials in Human Research (in German: KlinV, in French: 
OClin, in Italian: OSRUm) 

SAE Serious Adverse Event 
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1 STUDY SYNOPSIS 

Provide a structured synopsis containing all important information, preferably in tabular view: 

Sponsor-Investigator 
Prof.Dr.med. Lorenz Risch, PhD MPH MHA, labormedizinisches zentrum Dr. Risch, 
Wuhrstrasse 14, 9490 Vaduz, Liechtenstein, email lorenz.risch@risch.ch; Phone +41 
58 523 3000; Mobile Phone +41 79 642 71 70 

Study Title: 
Defining the role of a fertility bracelet for early recognition and monitoring of COVID-
19 in Liechtenstein (COVI-GAPP) 

Short Title / Study ID: 
A fertility tracker for recognition of COVID-19 

Protocol Version and 
Date: 

Version 1.1 (dated 06/04/2020) 

Trial registration: 
Intended registry: International Standard Randomised Controlled Trial Number 
(ISRCTN) registry 

Study category and 
Rationale 

Category A according to ClinO Art 20. The fertility tracker has a CE-mark, in the 
intended use, it is stated by means of the fertility tracker, “parameters are collected 
to improve the quality of the prediction and to provide general information on health 
and wellness”. The fertility tracker employs non-invasive nightly monitoring of 
temperature, breath rate, pulse rate, and movements during sleep.  

Clinical Phase: 
Phase of development an algorithm for early recognition and monitoring of COVID-
19 

Background and 
Rationale: 

Nightly monitoring of temperature, breath rate, pulse rate, movement by means of 
the AVA bracelet originally intended for cycle tracking in women. Whereas 
temperature is a sign of inflammation, breath rate can be regarded in function of 
affected airways, heart rate variability can be regarded as a marker of stress. All 
these parameters are expected to be altered in COVID-19 infection.  From the 
measurements, algorithms for early prediction of COVID-19 will be developed.  

Risk for participants is low (non-invasive monitoring and blood sampling) 

the expected benefit is large, as algorithms trained on the obtained data recordings 
are expected to recognize COVID-19 earlier than clinical symptoms. The latter 
would allow for earlier isolation and stratification as well as monitoring of COVID-19 
affected patients preventing further spread and allowing for appropriate healthcare.   

Objective(s): 
Primary objective   

A.) To see whether the AVA bracelet is capable to reliably identify persons with 
COVID19 infection early, before they get clinically. This would allow for early isolation 
and testing of contact persons, thereby preventing extensive spreading of the Virus. 
When reversing the process of lockdown of social and economic systems or during 
a so called second wave of the COVID-19 pandemic, the AVA bracelet could serve 
as a sensitive tool to observe relapsing infection rates.  

 

Secondary objective  

a.) To see whether the AVA bracelet would serve to recognize severe cases 
early allowing for risk stratification, early treatment and allocation of adequate care 
to patients with COVID19. 

b.)          To obtain a seroprevalence of COVID19 affected cases in the population of 
Liechtenstein. 

Outcome(s): 
Occurrence of COVID-19 infection, Severity of COVID-19 infection. 

Study design: 
Observational population-based cohort study employing a CE-marked medical 
device.  

Inclusion / Exclusion 
criteria: 

Inclusion criteria: participant of the GAPP study. 

Exclusion criteria: Inability to provide informed consent. 
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Measurements and 
procedures: 

Serological status for SARS-CoV2-antibodies will be determined at the beginning and 
the end of the study.   

The participants will be asked to answer a questionnaire about recent infections at 
study entry, undergo baseline serological testing. Study participants will be monitored 
overnight with the employed fertility tracker. We will collect information about clinically 
documented infections in all participants during follow-up, and provide serology at 
the end of the study.  

The study and participant recruitment will be performed within the study organization 
of the GAPP study, an ongoing prospective follow-up study. Baseline characteristics 
and other clinical information will be used from the GAPP study database.      

Study Product / 
Intervention:  

The fertility tracker automatically saves physiological information every 10 seconds 
throughout the night, requiring at least 4 hours of relatively uninterrupted sleep each 
night to stabilize parameter measurements. The wrist-worn bracelet acts as a data 
logger, recording and storing user’s physiological sensors signals as raw datasets 
throughout the night. Currently, the user synchronizes the bracelet to the mobile 
phone application the following morning. It is planned that participants wear the 
fertility tracker overnight during the study period.  

Control Intervention 
(if applicable): 

Not applicable  

Number of 
Participants with 
Rationale: 

Participants of the ongoing population based GAPP cohort study conducted in 
Liechtenstein will be included (n=2170; study approved by KEK ZH Stv.-Nr. 66/09). 
These will receive the AVA bracelet for free. We eventually might attain a sample 
size of 5000 participant by onboarding additional participants. For this second phase, 
we will seek separate ethical approval.  

Study Duration: 
The course of the pandemic can currently not be predicted and is critical for the 
duration of the study. WE anticipate a duration of nearly 3 years.  

Study Schedule: 
Participants should be included as fast as possible, in order to catch as many 

endpoints during the COVID-19 pandemic.  

 

Planned 12/04/2020 of First-Participant-In 

Planned 31/12/2021 of Last-Participant-Out 

 

Depending on the course of the pandemic, the study can be terminated earlier.  

Investigator(s): 
Prof. Dr.med. David Conen, McMaster University, Hamilton (conend@mcmaster.ca), 
Dr.med. Martin Risch, Private University Liechtenstein, Triesen 
(martin.risch@risch.ch), Dr. Stefanie Aeschbacher, Universität Basel 
(stefanie.aeschbacher@usb.ch) , Kirsten Grossmann MSc, Private University 
Liechtenstein (kirsten.grossmann@risch.ch) , Dr.Maureen Cronin, MD PhD, Chief 
medical Officer AVA for women (maureen.cronin@avawomen.com)   

Study Centre(s): 
Single-centre study.  

GAPP-Studie c/o labormedizinisches zentrum Dr. Risch, Wuhrstrasse 14, 9490 
Vaduz 

Statistical 
Considerations: 

Prediction of the development of COVID-19 infection will be modeled on the base of 

nightly monitoring of temperature, breath rate, pulse rate and movements by means 

of machine learning methods. Algorithms will be trained by comparing monitoring 

data of COVID-19 diseased and non-diseased individuals by a big data approach 

employing machine learning. The project partner AVA for women has already used 

such an approach to predict fertile days in women with a higher than 90% accuracy.  

The seroprevalence of COVID-19 will be presented as count (percentage) and we 
will standardize these numbers to the general population of the Principality of 
Liechtenstein. The sample size is given by the sample size included in the GAPP 
study.  

GCP Statement: 
This study will be conducted in compliance with the protocol, the current version of 
the Declaration of Helsinki, ISO EN 14155 as well as all national legal and 
regulatory requirements.  
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2 BACKGROUND AND RATIONALE  

The WHO has declared the current coronavirus (COVID-19) outbreak to be a pandemic and 
therefore a Public Health Emergency of International Concern. It is crucial to rapidly gain a better 
understanding of the newly identified virus, especially in relation to potential clinical and public 
health measures that can be immediately used to improve patients’ health and/or contain the 
spread of COVID-19. In particular, development of early and reliable detection of COVID-19 
carriers and symptomatic individuals suspected of COVID-19 infection is needed. We are 
proposing to test the utility of a CE marked, marketed medical device that can continually track 
changes in physiological parameters in detecting early signs of a COVID-19 infection. In particular, 
the device’s ability to register increases in physiological parameters associated with fever (e.g., 
resting pulse rate, breathing rate, and skin temperature) could render it an ideal candidate during 
screening point of care (POC), both for potential COVID-19 infections in asymptomatic, exposed 
users and asymptomatic users unsure of their exposure status. 

This proposal aims to optimize efficient patient management, public health preparedness, and 
response to current and future outbreaks of COVID-19 infection; leveraging an existing medical-
grade technology may allow clinicians and researchers to more rapidly evaluate patients’ 
wellbeing, thereby enabling faster case detection. Additionally, healthcare professionals and 
researchers may benefit from using this device to monitor patients with confirmed cases of 
COVID-19. Synced to a central app via Bluetooth, the device measures physiological parameters 
continuously while the user sleeps; its design inherently alleviates the need for healthcare 
professionals to take the patient’s temperature, breathing rate and pulse rate. We believe that, by 
reducing the in-person contact between patients and their care team, the AVA bracelet could also 
lower potential transmission rates among nurses, doctors, and/or researchers studying COVID-
19’s development 1. This medical device is able to measure skin temperature, pulse rate, and 
breathing rate simultaneously, and thus may prove helpful in combatting a public health crisis 
through its potential to rapidly detect novel COVID-19 cases and enable remote surveillance of .  

Studies on COVID-19, including one conducted by the World Health Organization’s Joint Mission 
with China, reported that fever (87.9% of cases), dry cough (67.7% of cases), and shortness of 
breath (18.6% of cases) are the most frequent presenting symptoms 2-4. Close to half (44%) of 
infected Chinese patients reported to treatment centers with fever as their first presenting 
symptom 2. Our proposal is to test the utility of a CE-marked, marketed, wrist-worn medical device 
(AVA bracelet) that tracks breathing rate, pulse rate, skin temperature, heart rate variability and 
skin perfusion to generate data on potential early signs of COVID-19 in users at home 1. While 
not specific to COVID-19, during a fever, body temperature and pulse rate increase 5-7 and 
shortness of breath can be measured by increased breathing rate. In a person with a known 
COVID-19 exposure, these signs could be indicative of an infection and helping with triaging for 
medical care 5.  A recent paper examining the validity of wrist temperatures compared to forehead 
and tympanic temperatures among Chinese COVID-19 patients found less overall variability in 
wrist temperatures 5.  

The authors assessed individuals’ temperatures upon their arrival to the medical clinic, 
demonstrating the importance of reliable knowledge about patients’ vital signs at time of triage. 
Our research vision takes this finding a step further; what if, for example, healthcare professionals 
and doctors had patient-provided access to a record of their pulse rate, temperature, and 
breathing rate over the past week or month, measured by a regulatory-approved medical device? 
Could this help expedite triaging and lead to more data-informed decisions around identifying 
potential cases for reference to a medical setting where they could receive official diagnosis and 
treatment? Alternatively, a study could also probe the utility of the AVA bracelet as a remote 
continuous measurement device, worn during sleep to monitor for potential infection in exposed 
or high-risk populations in self-isolation at home. These are just some of the initial research 
questions we have identified as potential applications for the AVA bracelet; collaborative scientific 
inquiry and further proposals are welcome, as we consider how to best enlist our medical device 
in the management of COVID-19.  

The AVA bracelet automatically saves physiological information every 10 seconds throughout the 
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night, requiring at least 4 hours of relatively uninterrupted sleep each night to stabilize parameter 
measurements 1. The wrist-worn bracelet acts as a data logger, recording and storing user’s 
physiological sensors signals as raw datasets throughout the night. Currently, the user 
synchronizes the bracelet to the mobile application the following morning. The mobile app reads 
the raw datasets via Bluetooth Low Energy (BLE) and transfers them to the backend. After 
computation and preprocessing of the physiological parameters based on the bracelet’s 
recordings, an algorithm obtains pre-processed physiological parameters changes that are 
transferred back to the mobile app and displayed to the user. 

Rapid action is required current the ongoing pandemic. The GAPP study is ideally suited to 
function as a platform to test the AVA device in a population with a high exposure to COVID-19 
viruses and a high prevalence of testing 8. GAPP is ongoing and therefore this project can be 
launched in a very short time period. 

The intervention of observing study participants with the AVA bracelet, a medical device, together 
with planned blood drawings entails only minimal risks and burdens and, according to ClinO Art 
20. can be categorized as category A. 

 

3 STUDY OBJECTIVES AND DESIGN  

3.1 Hypothesis and primary objective 

We hypothesize that by monitoring temperature, breath rate, pulse rate, and movements, it is 
possible to predict the occurrence of COVID-19 infection. We hypothesize, that temperature will 
increase due to inflammation/infection, breath rate will increase due to subclinical affection of 
lungs by COVID-19, heart rate variability as an indicator of stress will be diminished both as a 
consequence of infection also reflecting severity of infection. Further, we anticipate that 
registration of characteristic movements also allows to recognize  cough. Fever, breathing 
problems, and cough are all clinical cornerstones in the diagnosis of COVID-19 infection. WE 
further hypothesize that the alterations in measured parameters antecede the occurrence of 
clinical symptoms.  

 
Primary objective   

A.) To see whether the AVA bracelet is capable to reliably identify persons with COVID19 
infection early, before they get clinically. This would allow for early isolation and testing 
of contact persons, thereby preventing extensive spreading of the Virus. When 
reversing the process of lockdown of social and economic systems or during a so 
called second wave of the COVID-19 pandemic, the AVA bracelet could serve as a 
sensitive tool to observe relapsing infection rates.  

 
Secondary objective  

a.)      To see whether the AVA bracelet would serve to recognize severe cases early allowing     
          for risk stratification, early treatment and allocation of adequate care to patients with  
          COVID19. 

b.)  To obtain a seroprevalence of COVID19 affected cases in the population of  
          Liechtenstein. 

3.2 Primary and secondary endpoints 

Primary endpoint is the occurrence of COVID-19 infection, as assessed by clinical signs, serology 
and/or RT-PCR testing Date of occurrence, clinical symptoms and laboratory results, how 
infection was diagnosed is collected to describe the primary endpoint.The endpoints will be 
collected by periodic reports obtained on questioning the study participants. Participants and the 
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treating healthcare institutions will be contacted to obtain respective information.    

 

As a secondary endpoint severity of COVID-19 infection will be assessed. Participants and the 
treating healthcare institutions will be contacted to obtain respective information. The following 
parameters will be collected: Hospitalization needed within 30 days of COVID-19 diagnosis 
(including timing)? ICU admission within 30 days of COVID-19 diagnosis (including timing)? Use 
of mechanical ventilation within 30 days of COVID-19 diagnosis (including timing)? Participant  
reported health status after COVID-19 diagnosis (including timing)? COVID-19 related mortality? 
Quantiative RT-PCR results (viral loads) and quantitative Immunoassay results of COVID-19 
specific laboratory markers?  Results of other respiratory pathogens in COVID-19 negative 
participants available? Further healthcare contact of patients tested negative for COVID-19? 

 

3.3 Study design  

This is a prospective cohort study employing a medical device (the AVA bracelet) as a monitoring 
tool. The GAPP study is already running since June 2010 and, after the baseline exam has been 
conducting follow-up visits every 3-5 years. Currently, the second follow-up period is being 
conducted. Due to the COVID-19 pandemic, the regular follow-up has been suspended. The 
study collective is very well described.  

3.4. Study intervention 

As soon as possible after ethical approval (within 1 week), study participants are offered an AVA 
bracelet. They will be asked to wear the AVA bracelet during the night until the study will be 
terminated. Temperature, breath rate, pulse rate and movings are recorded. Information on 
COVID-19 specific health status is collected at study start and symptomatic patients will be 
diagnosed for COVID-19, as recommended by national guidelines. At the end of the study blood 
will be drawn for serological analysis of anti-SARS-CoV2 antibodies.   

 

4 STUDY POPULATION AND STUDY PROCEDURES 

4.1 Inclusion and exclusion criteria, justification of study population 

The GAPP study is a population based national cohort including 2170 study participants aged 25 
to 41 at baseline. This number relates to about 32% of the whole population. Since the study was 
started to enrol participants from 2010, the study participants are now 35 to 51 years old 8.  

The GAPP study (study homepage www.blutdruck.li)  is an ongoing national cohort study done in 
the principality of Liechtenstein with a cooperation from the University Basel, Private University 
Liechtenstein, McMaster University Hamilton, and the labormedizinische zentrum Dr. Risch in 
Liechtenstein. Between 2010 and 2014 all inhabitants of Liechtenstein aged 25-41 years old were 
asked to participate in the study, and 2170 could be enrolled. The aim of the study is to identify 
the determinants for the development of hypertension and other cardiovascular risk factors. A 
large number of baseline characteristics and health information was collected in all participants. 
Several blood, urinary and genetic markers were collected. By ongoing follow-up we collect 
information on changes in health information and other characteristics are collected. Currently the 
second follow-up cycle is ongoing.  

GAPP is very well established scientifically. More than 30 scientific manuscripts have been 
published so far, some of them in major international journals 8-41. Therefore, the quality of the 
data collection is well recognized. In summary, the GAPP study provides a unique platform that 
would allow rapid evaluation of a promising medical device that has the potential to alleviate the 
suffering through the current COVID-19 pandemic.  
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The choice of the study population is ideal, as the organization is already in place, the study 
participants are already enrolled. With such a setting, the important and urgent study question 
can be addressed immediately.  

 
Inclusion criteria:  

- Participant of the GAPP study  

- Providing consent to the present study  

 

Exclusion criteria:  

- Inability to provide informed consent 

 

It is not planned to include vulnerable participants into the study.  

 
After a first phase of including participants from the GAPP-study, we eventually might attain a 
sample size of 5000 participant by onboarding additional participants. For this second phase, we 
will seek separate ethical approval. 

4.2 Recruitment, screening and informed consent procedure 

The GAPP study department harbors 6 collaborators performing the study visits of the study 
participants onsite at the GAPP study facility (Wuhrstrasse 14) in Vaduz,  Liechtenstein. The 
department has 4 consultation rooms and 3 office rooms. The proximity to the consultation rooms 
of the labormedizinische zentrum Dr. Risch allows for rapid scale-up of activities. Since the study 
is up and running and has a very good reputation within the study cohort and the whole country, 
starting the evaluation of the AVA watch in the COVID-19 pandemic is readily available. According 
to the world rankings, Liechtenstein is one of the countries with the highest incidences of COVID-
19 (1582 cases per million persons, first case 2. March 2020), but on the other hand also has one 
of the highest testing frequencies for SARS-CoV-2 (2.75 percent of the whole population tested 
by March 29th 2020). Proximity of laboratory and study center, nationwide coverage of laboratory 
analysis, running national cohort, international cooperation, government support are all success 

factors for the envisaged project.  
Participants already provided informed consent for participation in the GAPP study. As the study 
organization has an up-to-date address database, study participants are contacted by letter, email 
or telephonically. They will receive the participant information and called in into the study center 
upon stating their will to participate, where the AVA bracelet will be distributed. They will be offered 
opportunity to ask questions before providing informed consent by telephone, email, or at the 
occasion of device distribution, namely before the AVA bracelet will be distributed.   
The investigators will explain to each participant the nature of the study, its purpose, the 
procedures involved, the expected duration, the potential risks and benefits and any discomfort it 
may entail. Each participant will be informed that the participation in the study is voluntary and 
that he or she may withdraw from the study at any time and that withdrawal of consent will not 
affect his or her subsequent medical assistance and treatment.  

The participant will be informed that his or her medical records may be examined by authorised 
individuals other than their treating physician. 

All participants for the study will be provided a participant information sheet and a consent form 
describing the study and providing sufficient information for participant to make an informed 
decision about their participation in the study. The time between obtaining the study information 
and starting the distribution of AVA bracelets is at least 1 day.   

The formal consent of a participant, using the approved consent form, will be obtained before the 
participant is submitted to any study procedure. The consent form will be signed and dated by the 
investigator or his designee at the same time as the participant sign. A copy of the signed informed 
consent will be given to the study participant, if requested. The consent form will be retained as 
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part of the study records. The informed consent process is documented in the participant 
database and any discrepancy to the process described in the protocol must be explained. No 
compensation is offered to study participants. They can keep the AVA bracelet after terminating 
the study. 

4.3 Study procedures 

The study starts as soon as ethical approval is obtained, preferably in calender week 15 2020. 
The rapid study start is intended in order to capture as many COVID-19 cases as possible. The 
study will be ongoing until the COVID-19 pandemic is eradicated, a vaccine or curative therapy 
has become available, or if the Investigators come to the decision to terminate the study. Due to 
the unclear course of the pandemic, it is not possible to provide an exact date of study duration. 
We anticipate that the study should be terminated on 31st December 2021 the latest.  

First, study participants will be contacted by mail with the study information and the informed 
onsent sheet. After providing informed consent (in case of questions, the study staff can be 
contacted for questions at the contact information already known to the study participants) the 
study participants, baseline clinical information is provided in a study questionnaire. The study 
participants will then obtain an AVA bracelet, either by post or in the study center. Informed 
consent will be discussed personally on the occasion of a personal contact due to provision of 
the AVA bracelet or presentation for blood sampling. 

While the AVA Bracelet was designed to measure physiological changes across the menstrual 
cycle. its sensors work across genders and age groups. We foresee that the device is capable of 
providing relevant insights for men and women alike during this pandemic, including among those 
populations most at risk of developing serious complications from COVID-19, including: people 
over the age of 60 and people with underlying conditions like hypertension, diabetes, 
cardiovascular disease, chronic respiratory disease, and cancer. The AVA bracelet automatically 
saves physiological information every 10 seconds throughout the night, requiring at least 4 hours 
of relatively uninterrupted sleep each night to stabilize parameter measurements. The wrist-worn 
bracelet acts as a data logger, recording and storing user’s physiological sensors signals as raw 
datasets throughout the night. Currently, the user synchronizes the bracelet to the mobile phone 
application the following morning. The mobile app reads the raw datasets via Bluetooth Low 
Energy (BLE) and transfers them to the backend. After computation and preprocessing of the 
physiological parameters based on the bracelet’s recordings, an algorithm obtains pre-processed 
physiological parameters changes that are transferred back to the mobile app and displayed to 
the user.  

Designed to combine multiparameter measurement into one device, the AVA bracelet could 
leverage its real-time monitoring system to fight a novel health threat. We believe the simple but 
continuous monitoring of temperature, breathing and pulse rates could provide guidance around 
if and when people should seek medical care. Furthermore, the recorded physiological data could 
improve our knowledge of COVID-19’s early signs and overall trajectory. 
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Figure 1: Illustration of the AVA bracelet 

 

The AVA bracelet is intended to monitor a woman’s fertility by measuring and recording 
physiological parameters (body temperature, resting pulse, heart rate variability, and breathing 
rate) as an aid in ovulation prediction to aid in conception (not to be used for contraception). Its 
intended use is to measure and display physiological parameters to aid women in ovulation 
prediction to facilitate conception. Additionally, parameters are collected to improve the quality of 
the prediction and to provide general information on health and wellness. The device is CE-
marked (certificate see Appendix 2). 

We will obtain COVID-19 specific information at baseline and study participants will asked to 
provide COVID-19 specific symptoms during the study duration. In case of the occurrence of 
COVID-19 specific symptoms, participants will be asked to undergo RT-PCR and serological 
testing according to national guidelines by utilizing routine healthcare. We will conduct periodic 
surveys (e.g. every 14 days) requesting the study participants to provide information regarding 
their health status. Study participants will be asked to provide a blood sample at the end of the 
study for serological studies of COVID-19 (investigation of SARS-CoV2-antibodies).  The 
flowchart of the participant journey within the present investigation is summarized in Figure 2. A 
summary of the study visits is provided in Appendix 1. 

 

 

Figure 2: Journey of study participants.  

 

4.4 Withdrawal and discontinuation 

If a study participants withdraw from the study, recording of AVA bracelet data will be stopped. 
Data is stored in a coded manner and the decoding information for concerned individuals will be 
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irreversibly destroyed.   

 

5 STATISTICS AND METHODOLOGY 

5.1. Statistical analysis plan and sample size calculation 

Together with Dr. Maureen Cronin and her team, data will be analysed by machine learning 
procedures. By training models, we aim to identify characteristic patterns of the recorded 
physiological parameters in order to predict the occurrence of COVID-19 infection. We intend to 
employ software packages such as R or SAS for modeling.   

The present study is an (non-funded) associated partner to the COVID-RED consortium, which 
applied for a Horizon 2020 grant (see grant application as a document accompanying the present 
study protocol. Depending on the realization of that project, we will contribute data to that joint 
project. 

The sample size of 2170 is given by the already existing study population. At a later stage, we 
may think of enlarging the sample size to 5000 by offering non-GAPP participants a participation 
in the study. However, this would be subject of a protocol amendment.   

5.2. Handling of missing data and drop-outs 

Should participants not regularly record data with the AVA bracelet, cases will be excluded from 
further analysis. 

   

6 REGULATORY ASPECTS AND SAFETY 

Device deficiencies and all adverse events (AE) including all serious adverse events (SAE) are 
collected, fully investigated and documented in the source document and appropriate case report 
form (CRF) during the entire study period, i.e. from patient’s informed consent until the last 
protocol-specific procedure. As only non-invasive monitoring is performed during the study period, 
no safety follow-up period is needed. Documentation includes dates of event, treatment, 
resolution, assessment of seriousness and causal relationship to device and/or study procedure 
[ISO 14155, 6.4.1.]. 

6.1 Local regulations / Declaration of Helsinki 

This study is conducted in compliance with the protocol, the current version of the Declaration of 
Helsinki, ISO 14155, the HRA as well as other locally relevant legal and regulatory requirements.  

 

6.1.1 Foreseeable adverse events and anticipated adverse device effects 

Due to the non-invasive nature of the monitoring, the likelihood for foreseeable adverse events 
and the occurrence of anticipated adverse device effects is low. The most likely reason for an 
anticipated adverse device effect is a dysfunctional device making registration of monitoring data 
impossible.   

 

6.1.2 Definition and Assessment of safety related events 

Adverse Event (AE) 
Any untoward medical occurrence, unintended disease or injury or any untoward clinical signs 
(including an abnormal laboratory finding) in participants, users or other persons whether or not 
related to the investigational medical device [ISO 14155: 3.2]. 
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This includes events related to the investigational device or the comparator and to the 
procedures involved. For users or other persons this is restricted to events related to the 
investigational medical device.  
 
Adverse Device Effect (ADE) 
Adverse event related to the use of an investigational medical device [ISO 14155: 3.1]. 
This includes any adverse event resulting from insufficient or inadequate instructions for use, 
deployment, implantation, installation, operation, or any malfunction of the investigational 
medical device. This includes any event that is a result of a use error or intentional misuse.  
 
Serious Adverse Event (SAE) [European regulation on medical devices 2017/745, art. 58]. 
Any adverse event that led to any of the following: 
(a) death, 
(b) serious deterioration in the health of the subject that resulted in any of the following: 
(i) life-threatening illness or injury, 
(ii) permanent impairment of a body structure or a body function, 
(iii) hospitalisation or prolongation of patient hospitalisation, 
(iv) medical or surgical intervention to prevent life-threatening illness or injury or permanent 
impairment to a body structure or a body function, 
(v) chronic disease, 
(c) foetal distress, foetal death or a congenital physical or mental impairment or birth defect. 
 
This includes device deficiencies that might have led to a serious adverse event if a) suitable 
action had not been taken or b) intervention had not been made or c) if circumstances had been 
less fortunate. These are submitted to the EC via BASEC within 7 days. A planned 
hospitalisation for pre-existing condition, or a procedure required by the protocol, without a 
serious deterioration in health, is not considered to be a serious adverse event.  
 
Device deficiency 
Inadequacy of a medical device related to its identity, quality, durability, reliability, safety or 
performance, such as malfunction, misuse or use error and inadequate labelling [ISO 14155: 
3.15].  
 
Health hazards that require measures 
Findings in the trial that may affect the safety of study participants and, which require preventive 
or corrective measures intended to protect the health and safety of study participants SAE 
[ClinO Art. 37]. 
 
Causal Relationship of SAE [MEDDEV 2.7/3 revision 3, May 2015]. 
A causal relationship towards the medical device or study procedure should be rated as follows: 
• Not related: The relationship to the device or procedures can be excluded. 
• Unlikely: The relationship with the use of the device seems not relevant and/or the event 
can be reasonably explained by another cause, but additional information may be obtained. 
• Possible: The relationship with the use of the investigational device is weak but cannot 
be ruled out completely. Alternative causes are also possible. 
• Probable: The relationship with the use of the investigational device seems relevant 
and/or the event cannot reasonably explained by another cause. 
• Causal relationship: The serious event is associated with the investigational device or 
with procedures beyond reasonable doubt. 
Device deficiencies that might have led to an SAE are always related to the medical device. 

 

6.1.3 Reporting of Safety related events 

Reporting to Sponsor-Investigator: 
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All SAEs, device deficiencies and health hazards that require measures are reported to the 
Sponsor-Investigator within 24 hours upon becoming aware of the event. Device deficiencies are 
assessed regarding their potential to lead to an SAE. 

 

Pregnancies  

Depending of the study, reporting of pregnancies is not necessary.  

 

Reporting to Authorities: 

In Category A studies, the sponsor is subject to the notification requirements specified in Art. 15 
of the MedDO of 17 October 2011 (SR 812.213). 

It is the Investigator’s responsibility to report to the Ethics Committee via BASEC device 
deficiencies that could have led to serious adverse events if suitable action had not been taken, 
intervention had not been made, or circumstances had been less fortunate within 7 days [ClinO 
Art. 42]. 

Health hazards that require measures are reported to the Ethics Committee via BASEC within 2 
days [ClinO Art. 37]. 

 

Periodic safety reporting: 

A yearly safety update-report is submitted by the Investigator to the Ethics Committee via BASEC. 

A report is submitted to the Amt für Gesundheit of the Principality of Liechtenstein by the Sponsor-
Investigator, as defined in Art. 15a,b of the MedDO of 17 October 2011 (SR 812.213). 

6.3 (Periodic) safety reporting 

An annual safety report (ASR/DSUR) is submitted once a year to the local Ethics Committee by 
the Investigator (ClinO, Art. 43 Abs). 

6.4 Radiation 

Use of the device is not subject to radiation.  

6.5 Amendments 

Substantial changes to the study setup and study organization, the protocol and relevant study 
documents are submitted to the Ethics Committee for approval before implementation. Under 
emergency circumstances, deviations from the protocol to protect the rights, safety and well-being 
of human subjects may proceed without prior approval of the Ethics Committee. Such deviations 
shall be documented and reported to the Ethics Committee as soon as possible. 

Substantial amendments are changes that affect the safety, health, rights and obligations of 
participants, changes in the protocol that affect study objective(s) or central research topic, 
changes of study site(s) or of study leader and sponsor (ClinO, Art. 29). 

A list of substantial changes is also available on www.swissethics.ch. 

A list of all non-substantial amendements will be submitted once a year to the competent EC 
together with the ASR. 

6.7 (Premature) termination of study 

The Sponsor-Investigator may terminate the study prematurely before 31st December 2021, 

 

- When the COVID-19 pandemic is eradicated,  
- A vaccine or curative therapy has become available 
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- Insufficient compliance of the study participants to the study protocol 
- Due to ethical concerns, 
- Due to insufficient participant recruitment, 
- When the safety of the participants is doubtful or at risk (e.g. when the benefit-risk 

assessment is no longer positive), 
- Alterations in accepted clinical practice occure that make the continuation of the study 

unwise 
- Early evidence of harm or benefit of the observations with the AVA bracelet 

 

Upon regular study termination, the Ethics Committee is notified via BASEC within 90 days (ClinO, 
Art. 38).  

Upon premature study termination or study interruption, the Ethics Committee is notified via 
BASEC within 15 days (ClinO, Art. 38). 

The www.swissethics.ch template concerning the notification of completion, discontinuation or 
interruption of the clinical trial is used for this purpose. 

Health-related data at the end of the study are introduced into the GAPP study database.  

 
 
 

6.8 Insurance 

In the event of study-related damage or injuries, the liability of the institution labormedizinisches 
zentrum Dr. Risch in Vaduz provides compensation, except for claims that arise from misconduct 
or gross negligence.  
 

7 FURTHER ASPECTS 

7.1 Overall ethical considerations 

The expected scientific value is expected to be large considering the threat of the pandemic and 
the need for earliest possible identification of COVID-19 affected cases. The methodology chosen 
is ideal: it is based on a study already in operation, with funding already obtained, a bracelet 
already approved and in use for fertility tracking, ready to start immediately.  No vulnerable 
individuals will be included. 

7.2 Risk-benefit assessment  

Risk for participants is low (non-invasive monitoring and blood sampling). The expected benefit 
is large, as algorithms trained on the obtained data recordings are expected to recognize COVID-
19 earlier than clinical symptoms. The latter would allow for earlier isolation and stratification as 
well as monitoring of COVID-19 affected patients preventing further spread and allowing for 
appropriate healthcare.   
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8 QUALITY CONTROL AND DATA PROTECTION 

8.1 Quality measures  

Study personnel trained on all important study related aspects is employed for conducting the 
study. Once yearly, an independent audit is done by Prof. Dr. Christoph Saely from the Vorarlberg 
Institute of Vascular Investigation and Treatment.   

For quality assurance the sponsor, the Ethics Committee or an independent trial monitor may visit 
the research sites. Direct access to the source data and all study related files is granted on such 
occasions. All involved parties keep the participant data strictly confidential.  

8.2 Data recording and source data 

The GAPP study employs secuTrial and MOLIS to record data. Both systems have audit trails. 
For each participant a CRF is maintained. CRFs are identified by coded information used in the 
GAPP study. Further, the source data of the AVA bracelets is recorded within the computer 
systems of AVA. These data are kept strictly confidential and cannot be changed.    

8.3 Confidentiality and coding 

Trial and participant data will be handled with uttermost discretion and is only accessible to 
authorised personnel who require the data to fulfil their duties within the scope of the study. On 
the CRFs and other study specific documents, participants are only identified by a unique 
participant number. Access to computer systems is highly restricted by two-level passwords. 
Access on data is recorded in a traceable manner. Data is backed up at the data center of the 
labormedizinisches zentrum Dr. Risch in Vaduz.  
 
Biological material in this study is not identified by participant name but by a unique participant 
number. Biological material is appropriately stored at -80°C in a restricted area only accessible to 
the authorised study personnel at the GAPP-study and the labormedinisches zentrum Dr. Risch.   

8.4 Retention and destruction of study data and biological material 

All study data and biological material are archived at the labormedizinisches zentrum Dr. Risch 
in Vaduz for 10 years after study termination or premature termination of the study. After the study 
sera will be destroyed according to the normal process within the ISO-17025 accredited 
labormedizinisches zentrum Dr. Risch.  

 

9  MONITORING AND REGISTRATION 

The external auditor Prof. Dr.Christoph Saely will be conducting a monitoring visit before starting 
the present study and once yearly.   

It is intended that the study will be registered in the Intended registry: International Standard 
Randomised Controlled Trial Number (ISRCTN) registry.  

 

10. FUNDING / PUBLICATION / DECLARATION OF INTEREST 

The study is funded by the government of the principality of Liechtenstein (75000 CHF), the prince 
of Liechtenstein (350’000 CHF) and the Hanela Stiftung Aarau (100’000 CHF). Further funding 
will be sought. The funding sources did not have any role in conceiving the study idea, planning 
of the study, and will not have any role in the decision to publish. It is planned to publish the study 
data in peer reviewed scientific journals. Decision to publish will be done by a majority of 
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investigators. Authorship will be clarified according to the ICMJE-criteria. Aggregate data will be 
provided upon request to qualified external research proposals. Dr. Maureen Cronin is employee 
of AVA. All other investigators are independent of AVA.  
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Appendix 1: Schedule of assessments 

 

Time (hour, day, 

week) 
>-1 day 0 

Occurrence of 

symptoms 

Periodic 

reporting (e.g. 14 

days) 

Final study visit  

Visit Information 
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bracelet / 

provision of 

COVID-19 

related 

information  

Visit at occurrence 

of COVID-19 

specific symptoms 

 

Final study visit 

Oral and written 

patient 

information 

+  

  

 

Written consent  +    

Inclusion-/ 

exclusion criteria 
 + 

  
 

Medical history  +    

Participant 

characteristics  
 + 

  
 

Procedures   +   

Intervention  + +   

Questionnaire  + + + + 

Sampling  + +  + 
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Appendix 2: Declaration of conformity of the AVA bracelet. 
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Objectives We investigated machine learning based identification of pre-symptomatic COVID-

19 and detection of infection-related changes in physiology using a wearable device. 

Design Interim analysis of a prospective cohort study.

Setting, participants and interventions Participants from a national cohort study in 

Liechtenstein were included. Nightly they wore the Ava-bracelet that measured respiratory 

rate (RR), heart rate (HR), heart rate variability (HRV), wrist-skin temperature (WST), and skin 

perfusion. SARS-CoV-2 infection was diagnosed by molecular and/or serological assays. 

Results A total of 1.5 million hours of physiological data were recorded from 1,163 participants 

(mean age 44 +/- 5.5 years). COVID-19 was confirmed in 127 participants of which, 66 (52%) 

had worn their device from baseline to symptom onset and were included in this analysis. 

Multi-level modelling revealed significant changes in five (RR, HR, HRV, HRV ratio, and WST) 

device-measured physiological parameters during the incubation, pre-symptomatic, 

symptomatic, and recovery periods of COVID-19 compared to baseline. The training set 

represented an 8-day long instance extracted from day 10 to day 2 before symptom onset 

(SO). The training set consisted of 40 days measurements from 66 participants. Based on a 

random split, the test set included 30% of participants and 70% were selected for the training 

set. The developed long short-term memory (LSTM) based recurrent neural network (RNN) 

algorithm had a recall (sensitivity) of 0.73 in the training set and 0.68 in the testing set when 

detecting COVID-19 up to two days prior to symptom onset.

Conclusion Wearable sensor technology can enable COVID-19 detection during the pre-

symptomatic period. Our proposed RNN algorithm identified 68% of COVID-19 positive 

participants two days prior to symptom onset and will be further trained and validated in a 

randomized, single-blinded, two-period, two-sequence crossover trial. 

Study registration ISRCTN51255782.

Strengths and limitations of this study
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- Large sample size from a well-characterized and healthy national cohort. 

- Wearable device technology combined with machine learning to monitor health 

parameters related to early detection of COVID-19 infections. 

- Solely data from laboratory confirmed COVID-19 infections were used.

- Data from one single study centre may limit the generalizability of our findings. 

- Small subsample of COVID-19 positive cases with sufficient high-quality data. 

INTRODUCTION
One of the primary ways of controlling the spread of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) involves identification, tracing, and isolation programs 

implemented in several countries [1]. With multiple SARS-CoV-2 variant strains emerging, 

countries have prioritised vaccine rollouts, searches for alternatives to quarantine, and 

identification of individuals with COVID-19. Reverse transcription-polymerase chain reaction 

(RT-PCR), serological testing, surveys, temperature measurements, and symptom checks are 

used to detect COVID-19 [2]. However, these methods are usually unable to identify pre-

symptomatic or asymptomatic individuals.

Recent studies have highlighted the need to identify potential cases prior to symptom onset 

(SO) to prevent virus transmission [2,3]. Asymptomatic patients are likely to ignore safety 

precautions, leading to increased virus transmission. Detection of COVID-19 during the 

asymptomatic or pre-symptomatic stage facilitates early isolation, thereby limiting contact 

with susceptible individuals. Commonly reported COVID-19 symptoms include fever, 

coughing, chest tightness, difficulty breathing, fatigue, dyspnoea, myalgia, sputum 

production, headache, and gastrointestinal symptoms [4,5]. While molecular tests are 

continuously used to confirm infections, the logistics and costs of repeat tests across 

populations are prohibitive [6]. Recently, scientists have called for further research 

investigating whether wearable medical devices such as Ava-bracelets and direct-to-consumer 

products such as Fitbit [7,8], smartwatches [8,9] and other activity trackers [10] could be used 

for such surveillance [11].

Here, we assess the use of an existing regulated wearable medical device (Ava-bracelet) to 

analyse COVID-19-related changes in various physiological parameters across four infection-

related periods: incubation, pre-symptomatic, symptomatic, and recovery. To our knowledge, 

this is the first prospective study to measure physiological changes in respiratory rate (RR), 
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heart rate (HR), heart rate variability (HRV), wrist-skin temperature (WST), and skin perfusion 

to develop an algorithm to detect pre-symptomatic COVID-19 infection. 

METHODS

Study design and participants

Participants from the ongoing observational population-based prospective cohort study 

(Genetic and Phenotypic Determinants of Blood Pressure and Other Cardiovascular Risk 

Factors (GAPP); n = 2,170) in the Principality of Liechtenstein were invited to participate in the 

current study (COVI-GAPP) [11]. Active since 2010, the GAPP study was designed to 

understand the development of cardiovascular risk factors in the general population better 

(i.e. healthy adults aged 25 to 41 years) [12]. The exclusion criterion regarding participation in 

the COVI-GAPP study was individuals who did not provide written informed consent. The first 

COVI-GAPP participants were enrolled in April 2020, and the data used for this interim analysis 

was collected through March 2021 (n = 1,163). The local ethics committee approved the study 

protocol, and written informed consent was obtained from each participant (BASEC 2020-

00786). This COVI-GAPP interim analysis was pre-planned as a pilot study to provide an initial 

algorithm for the COVID-RED project (n= 20,000), a randomised, single-blinded, two-period, 

two-sequence crossover trial [13].

Bracelet, app, and participant compliance

The Ava-bracelet (version 2.0; Ava AG, Zurich, Switzerland) is an FDA-cleared and CE-certified 

fertility aid bracelet that complies with international regulatory requirements and applicable 

standards [14,15]. The wrist-worn tracker is commercially available at US$ 279 and consists of 

three sensors that measure five physiological parameters simultaneously: RR (breaths per 

minute), HR (beats per minute), HRV (ms), WST (°C), and skin perfusion (Figure S1). Although 

the Ava-bracelet measures multiple forms of HRV, we focused on two time- and one 

frequency-dependent measurements: standard deviation of the normal-to-normal interval 

(SDNN), root mean square of successive differences (RMSSD), and HRV ratio (see 

Supplementary Materials). In addition to the physiological parameters of interest, the Ava-

bracelet measures sleep quantity (duration) and sleep quality using a built-in accelerometer. 

Prior studies have demonstrated how device data can inform a machine-learning algorithm 

that detects ovulating women’s most fertile days in real time with 90% accuracy [16]. Worn 

only while asleep, the Ava-bracelet saves data every 10 s and requires at least four hours of 
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relatively uninterrupted sleep. The participants synchronised their bracelets with a 

complementary smartphone app upon waking, transferring data from the device to Ava’s 

backend system. 

Although no study-specific adjustments were applied to the hardware of the Ava-bracelet, the 

complementary app had a customised user functionality developed by the manufacturer 

specifically for the COVI-GAPP study. Participants could still see and monitor changes in the 

physiological parameters in the app; however, they did not receive messages or algorithm-

driven interpretations of their data (Figure 1A). Participants recorded behaviours that may 

have interfered with the physiological parameters of interest (e.g., alcohol, medication, and 

drug intake), as such substances can alter central nervous system functioning (Figure 1B) [17]. 

The daily diary in the custom app enabled participants to record COVID-19-related symptoms 

(Figure 1C). To ensure the highest quality data, the study team reviewed a weekly compliance 

log that indicated which participants had synced their Ava-bracelets with the app during the 

preceding week [18]. The study team followed up with the participants individually to mitigate 

operational challenges or log in issues.

SARS-CoV-2 antibody testing and RT-PCR testing

SARS-CoV-2 antibody tests were assessed at baseline (starting April 2020) and during follow-

up (starting December 2020) by the medical laboratory Dr. Risch Ostschweiz AG (Buchs SG, 

Switzerland). The tests were assessed with an orthogonal test algorithm that employed 

electrochemiluminescence assays. These assay test for pan-immunoglobulins directed against 

the N antigen and the receptor-binding domain of the SARS-CoV-2 spike protein [19]. 

Seroconversion was assumed if the first blood sample was negative for SARS-CoV-2 

antibodies, and the second sample was positive.

If participants had any symptoms during the study period, they were encouraged to visit the 

Liechtenstein National Testing Facility for RT-PCR testing. The testing facility was open daily 

allowing for higher testing frequencies than that in other European countries [20]. RT-PCR was 

performed on either the COBAS 6800 platform (Roche Diagnostics, Rotkreuz, Switzerland) or 

the TaqPath assay on a QuantStudio 5 platform (Thermo Fisher Scientific, Allschwil, 

Switzerland) [20–22]. Participants diagnosed with COVID-19 contacted the study team to 

discuss their symptoms and health statuses. Additionally, participants provided their date of 

SO and overall symptom duration, enabling us to calculate the symptom end (SE) date.
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Questionnaires

For the second antibody test, all participants were asked to complete a questionnaire 

providing personal information (age, sex), smoking status (current, past, never), blood group 

(A, B, AB, 0, unknown), number of children, exposure to household contacts who tested 

positive for COVID-19, working with people who have tested positive for COVID-19, and 

vaccination status. We calculated the body mass index (BMI) based on the height and weight 

collected from the GAPP database.

Statistical analysis

The primary objective was to determine whether different physiological parameters deviated 

from the baseline during COVID-19 infection. This information was used to develop a model 

for predicting COVID-19 infection before SO. To evaluate whether RR, HR, HRV, WST, and skin 

perfusion deviated from baseline measurements during the four infection-related periods, we 

categorised the daily parameter measurements as occurring at baseline if the day (d) was >10 

days prior to SO (i.e. d > SO-10), the incubation period as SO-10 ≤ d < SO-2, and the pre-

symptomatic period as SO-2 ≤ d < SO. We chose a cut-off of -2 days based on previous reports 

of infected participants becoming contagious two days before symptom onset[23]. Because 

the participants’ reported symptom durations varied, the measurements were categorised 

into the symptomatic infection category if SO ≤ d ≤ SE. Finally, the parameters collected after 

SE were classified as being in the recovery period (d > SE). 

Development of a machine learning algorithm for detecting pre-symptomatic COVID-19 

infection

We chose a recurrent neural network (RNN) with long short-term memory (LSTM) cells for the 

binary classification of an individual as healthy or infected (positive for COVID-19) on a given 

day. LSTM networks have proven to be highly accurate in recognising time series patterns and 

events across large datasets [24]. The internal structure of such networks can memorise states 

and easily fetch or activate them, even if they were created many epochs ago. The LSTM 

network we implemented consisted of two hidden layers with 16 and 64 cells (Figure 2). Its 
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output activation was a sigmoid function, whereas the recurrent activation was a hyperbolic 

tangent (tanh) function. The output was limited to a range between 0 and 1 to ensure that the 

model yielded an overall probability of infection on a given day. A potential COVID-19 infection 

was indicated when this probability exceeded 0.5.

1. Data processing and multi-level model specification

All data processing and analyses were performed in R (v3.6.1) and Python (v3.6). Pre-

processing of the data was performed to remove potential artefacts and ensure consistency 

with best practices [25] (see Supplementary Materials for detailed description). Further, we 

ran a series of multilevel models with random intercepts and slopes to determine the 

differences in physiological parameters during the infection-related periods compared to 

baseline. Given our continuous criterion, we modelled our outcomes of interest using residual 

maximum likelihood estimation and Satterthwaite degrees of freedom. Four binary variables 

were created, indicating the infection period to which a given measurement belonged (1 = 

belonging to that period, 0 = not belonging to that period). The reference baseline-period 

measurements were encoded as zero across all four binary variables. The reported results 

included unstandardised regression coefficients for each effect. When multiple models were 

possible for the same parameter, we chose the model using the percentile of the data (stable 

maxima) with the best fit (see Supplementary Materials). To ensure a family-wise alpha level 

less than or equal to 0.05, we implemented Bonferroni correction for the seven analysed 

parameters (corrected alpha level of p = 0.007) and adjusted the definition of marginal 

significance accordingly (i.e. 0.007 ≤ p ≤ 0.05).

2. Data preparation and feature extraction for algorithm development

The Ava-bracelet records over a million data points per use. Therefore, we first identified the 

features that are most predictive of COVID-19. We normalised the night-time WST, RR, and 

HR values to prime our model to detect deviations from baseline measurements and ensure 

greater stability in the measurements (e.g. to minimise inter-participant variability). Next, we 

compared the predictive performance of the raw features before engineering the novel 

composite features. We conducted a principal component analysis decomposition to test the 

correlation between the day of SO and other binary-labelled features (e.g. alcohol 
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consumption). We also examined the correlation between WST and other physiological 

parameters to determine the potential autocorrelation prior to the model specification.

3. Training process

To limit our analysis to symptomatic COVID-19 cases, participants had to report the date of 

SO and record at least 28 days of bracelet data prior to that date. The full four weeks of data 

were required to ensure accurate baseline readings and enable the algorithm to account for 

cyclical variations in parameters attributable to monthly hormonal changes. Thus, each 

participant included in the analysis had at least 29 consecutive days of data recorded using 

the bracelet. We partitioned the data into 8-day sequences, enabling the algorithm to 

compare the physiological parameters across 8-day windows. This means that each user had 

more negative (class 0; “healthy” days) sequences in the distribution (e.g., [26, 19], [25, 18] 

[11, 3]) than positive sequences (class 1; “infected” days [e.g., SO-10 to SO-2] as shown in 

Figure 3). We selected a binary cross-entropy loss function for the RNN by using a stochastic 

gradient descent (SGD) optimiser. Owing to the sample size, we set the learning rate to 0.007 

and 2000 epochs, while also enabling an early stopping mechanism to prevent model 

overfitting. We trained our RNN ten times, randomly splitting our sample into a training set 

(70% of participants) and a test set (30% of participants) for each instance. We report the 

metrics of the best-performing RNN model selected according to the following recall equation:

overall_recall = ((recall_class_1_train + recal_class_0_train) * 0.7 + (recall_class1_test + recall_class_0_test) * 0.3)/2

Finally, because of the number of COVID-19 cases compared to healthy days in our dataset, 

we upsampled instances of class 1 through duplication, such that it was represented in our 

training set 1.15 times more than a given negative sequence (i.e. class 0). Thus, the SGD 

optimiser treated the two classes as roughly equal and no longer overweighted the 

importance of the parameters predicting a healthy 8-day period. By training this LSTM model, 

we sought to leverage deep learning to predict the pre-symptomatic onset of COVID-19.

Patient and public involvement

No patient or public involvement. 
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RESULTS

Participants

A total of 1,163 participants (mean age = 44.1 years, standard deviation [SD] = 5.6; 667 [57%] 

females) were enrolled in the COVI-GAPP study (Figure 4). Of these participants, 127 (10.9%; 

95% confidence interval (CI) [9.3,12.8]) contracted COVID-19 during the study period. 10 

infected participants were hospitalised for short-term monitoring, with breathing difficulties 

and fever as the main reported symptoms. Three asymptomatic infected participants were 

retrospectively identified using antibody tests. As seen in Table 1, there were no differences 

in the sex ratio, age, BMI, or smoking status between individuals who did or did not test 

positive for COVID-19 during follow-up (all p-values ≥ 0.30). A significantly higher proportion 

of participants who contracted COVID-19 reported household contacts (n = 58 of 1,036 

seronegative participants vs. 53 of 127 seropositive participants; p < 0.001) or work colleagues 

who also had COVID-19 (n = 230 of 1,036 seronegative participants vs. 49 of 127 seropositive 

participants; p < 0.001). On average, COVI-GAPP participants wore the Ava-bracelet for 

1,370.8 h over the course of the study (SD = 802.7), for a total of 1,453,006 h. Of the 127 

participants who tested positive for COVID-19, either through RT-PCR and SARS-CoV-2 

antibody tests or antibody tests only, 66 users had worn their bracelet at least 29 days prior 

to SO which enabled sufficient data quality. Among these 66 participants, COVID-19 infection 

was confirmed by RT-PCR test and SARS-CoV-2 antibody test (n = 48) or solely by antibody test 

(n = 18).

1. Participants with confirmed COVID-19

Table 2 shows the clinical characteristics of COVID-19 positive participants, stratified according 

to their compliance with wearing the Ava-bracelet prior to SO. A series of 26 analyses of 

variance and chi-square tests with Bonferroni correction revealed that only BMI varied 

significantly between the two groups; noncompliant participants had a higher mean BMI (25.8 

kg/m2, SD = 4.0) than their compliant peers (23.8 kg/m2, SD = 3.7; F(1, 116) = 10.39, p = 0.002).

2. Compliant participants with confirmed COVID-19

Among the 66 compliant participants with COVID-19, 13,248 nights of data were collected 

(mean duration = 200 nights, SD = 47; range 72–284 nights) for a total of 124,079 h (mean 
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hours per participant = 1,880, SD = 461.8). The compliant participants had a mean age of 42.9 

years (SD = 5.6), and most had never smoked (n = 57; 86%). Their COVID-19 symptoms lasted 

for an average of 8.5 days (SD = 5.0; range 1–25 days). Table 2 shows the frequency of the self-

reported symptoms.

Physiological changes during the clinical course of COVID-19

Employing multilevel modelling, we observed significant changes in five (RR, HR, HRV, HRV 

ratio, and WST) of the seven device-measured physiological parameters during the incubation, 

pre-symptomatic, symptomatic, and recovery periods of COVID-19, compared to baseline. 

Table 3 lists the unstandardised coefficient values for each statistical model. The complete 

course of the different physiological parameters is shown in Figure 5.

1. Respiration rate

COVID-19 positive participants had a significantly higher RR during the symptomatic period 

than at baseline (  = 15.1 breaths/min, standard error [s.e.] = 0.26; p <0.0001). 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Controlling for intra-individual variance, the nightly RR increased by 1.0 breaths/min (s.e. = 

0.18; p <0.0001). There were no significant differences in the RR detected between the 

baseline and other periods (all p ≥ 0.114).

2. Heart rate

At baseline, the participants had a resting nightly HR of 55.4 beats per minute (bpm; s.e. = 

0.83; p < 0.0001). During the incubation period, individuals’ HR increased significantly by 0.87 

bpm (s.e. = 0.29; p = 0.004). HR remained elevated in the pre-symptomatic period, expected 

to be 1.0 bpm higher than that at baseline (s.e. = 0.36, p = 0.007). HR continued to increase 

following SO, beating 2.2 bpm faster than at baseline (s.e. = 0.48, p < 0.0001). Finally, even 

after SE, participants had a significantly elevated HR (+0.87 bpm higher than baseline; s.e. = 

0.22, p = 0.0002).

3. Heart rate variability: standard deviation of the NN interval

Compared to a baseline SDNN of 59.6 ms (s.e. = 1.4, p < 0.0001), participants had significantly 

decreased SDNN in the incubation ( = −1.5 ms, s.e. = 0.59, p = 0.0149), pre-𝛽𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 
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symptomatic ( = −1.7 ms, s.e. = 64; p = 0.0086), and symptomatic (𝛽𝑝𝑟𝑒 ― 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝛽𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

= −1.4 ms, s.e. = 0.73; p = 0.0499) periods. Following SE, SDNN returned to baseline levels (

= −0.9ms, s.e. = 0.51, p = 0.0787).𝛽𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 

4. Heart rate variability: root mean square of successive differences 

Our analyses did not reveal any significant phase-based differences in RMSSD for COVID-19 

positive participants during their infection (all p ≥ 157) compared to baseline ( = 43.7 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

ms, s.e. = 1.2; p ≤ 0.0001).

5. Heart rate variability ratio

As with SDNN, multilevel analysis revealed a marginally significant decrease in HRV ratio 

during the incubation ( = −0.01, s.e. = 0.01; p = 0.0361) and pre-symptomatic periods 𝛽𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 

(  = −0.02, s.e. = −0.01; p = 0.0165) compared to baseline (  = 0.50, 𝛽𝑝𝑟𝑒 ― 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

s.e. = 0.02; p < 0.0001). No significant difference in HRV ratio emerged between baseline and 

the symptomatic or recovery periods (all p-values ≥ 0.5474).

6. Wrist skin temperature

Over and above participant level variance, WST increased by 0.13°C (s.e. = 0.04; p = 0.001), 

0.18°C (s.e. = 0.05; p = 0.001), and 0.3°C (s.e. = 0.05; p < 0.0001) during the incubation, pre-

symptomatic and symptomatic periods, respectively, compared to baseline ( = 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

35.3°C, s.e. = 0.06; p < 0.0001). WST remained elevated by 0.2°C relative to baseline, even 

during the recovery period (s.e. = 0.03; p < 0.0001).

7. Skin perfusion

No changes in skin perfusion were observed when comparing measurements during infection 

(all p ≥ 339) with baseline values ( = −0.01, s.e. = 0.0; p < 0001).𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
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Model specification and algorithm performance

The best-performing RNN consisted of composite features derived from the maximum nightly 

WST and median nightly RR, averaged across the preceding three-night window. Other 

parameters were excluded. Table 4 summarises the model performance metrics for the 

training and testing samples. Class 1 represented an 8-day long training instance extracted 

from day 10 to day 2 before SO. Class 0 represented a training instance extracted from all 

other 8-day long consecutive measurements. The training set consisted of 40 days of 

measurements from 66 participants with a 70:30 train-test split. Sensitivity is reflected in the 

recall of Class 1, whereas specificity is determined by the recall of Class 0. Training the 

algorithm to detect COVID-19 one day before SO did not improve recall (data not shown). 

In the test set, the algorithm detected 68% of COVID-19 cases two days prior to SO. 

DISCUSSION

Our main objective was to assess the use of existing medical-grade technology in the early 

detection of changes in physiological parameters related to COVID-19, thereby facilitating 

early isolation and testing of potentially affected individuals to limit the spread of the SARS-

CoV-2 virus. Our RNN algorithm, trained and tested using a 70:30 split, identified 68% of 

COVID-19 cases up to two days before SO in 66 participants with an accurate false-positive 

rate and laboratory-confirmed cases of SARS-CoV-2. Therefore, we demonstrated that a 

wearable sensor bracelet implemented alongside a machine-learning model has the potential 

to detect COVID-19 infections prior to SO.

Our research is one of the first prospective cohort studies using wearable sensor technology 

to gather real-time continuous physiological data upon which a machine learning algorithm 

for COVID-19 pre-symptomatic detection was trained. Previous studies have evaluated the 

use of different wearable devices and machine learning to identify COVID-19 infections based 

on self-reported COVID-19 infections [7-8,25–31]. Mishra et al. [9], for example, evaluated the 

use of resting HR data from 32 infected Fitbit users to detect COVID-19 cases in real time and 

identified 62.5% of the cases before SO. Similarly, Miller et al. [33] used RR, HR, and HRV data 

from 271 WHOOP strap wearers to identify 20% of participants who developed COVID-19 

before SO and 80% by day three after SO. 
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Only laboratory-confirmed SARS-CoV-2 infections were used in this study to ensure more 

conclusive results. Our RNN algorithm detected 68% of laboratory-confirmed cases before SO, 

with additional statistical analyses revealing significant changes in the HR, HRV, and WST, 

across the disease trajectory. Furthermore, our algorithm included more concurrent 

physiological parameters than previous studies, such as nightly RR, WST, and cardiac data 

[7,9,31–35]. Unlike previous studies that performed retrospective measurements, our system 

could detect infections before SO. Uniquely, our research repurposed a previously existing CE-

marked medical device for a novel purpose, illustrating a relatively inexpensive technique for 

detecting pre-symptomatic COVID-19.This machine-learning algorithm can be applied to any 

sensor device that measures the same physiological parameters. 

Our findings suggest that a wearable-informed machine learning algorithm may serve as a 

promising tool for pre- or asymptomatic detection of COVID-19. However, RT-PCR testing 

remains the most effective method to confirm COVID-19 infections. A systematic review of 

wearable sensors in detecting COVID-19 reported these investigations as promising but also 

highlighted the need for investigations in broader populations [36]. Based on this interim 

analysis, a 20,000-person randomised controlled trial is underway to test the real-time efficacy 

of the RNN algorithm which can act on real-time machine-learning-driven alerts about the 

likelihood of a COVID-19 infection before symptoms are reported [13]. The initial results from 

this larger trial are expected in December 2022, with a wider validation and more practical 

implications of the first presented data approach. In addition, detecting other illnesses using 

wearable-informed machine-learning algorithm is promising [28,30].

The strengths of our study include its population-based design and recruitment from a well-

defined and well-characterised healthy cohort. A small subsample of COVID-19 positive users 

with sufficient high-quality data (wearing the Ava-bracelet ≥ 28 days prior to SO), reliance on 

data from a single national centre, and lack of ethnic diversity may limit the generalisability of 

our findings. Additionally, we could not exclude imprecision or misclassification errors related 

to the symptoms experienced, dates of SO and/or SE. We acknowledge that our sensitivity 

was less than 80%. We expect to improve the algorithm`s performance further in a larger 

cohort within the setting of the COVID-RED study (n=20`000). Furthermore, our investigation 

was based on data from individuals younger than 51 years who typically show less severe 

symptoms. The algorithm could perform better in older people with more severe clinical 
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manifestations. This question will also be addressed within the framework of the COVID-RED 

study [13]. Finally, one could argue that about half of the individuals identified as positive by 

the bracelet did not show SARS-CoV-2 infection in subsequent laboratory testing, and an 

unnecessary testing burden could arise from this fact. The positivity rates of PCR testing (i.e. 

approximately 15%, depending on disease prevalence) [37,38] in symptomatic outpatients 

routinely tested during the pandemic which were considerably lower than the 50% observed 

in asymptomatic Ava-bracelet users. Hence, the Ava-bracelet could be regarded as progress 

when compared to the current testing routine.

Overall, the COVI-GAPP study showed that pre-symptomatic detection of COVID-19-related 

changes in physiological parameters using a sensor bracelet is feasible. We found significant 

changes in HR, HRV, and WST occurring in COVID-19 positive patients during the pre-

symptomatic period compared to baseline measurements, over and above the effects of 

intrapersonal variability. A novel machine-learning algorithm detected 68% of laboratory-

confirmed SARS-CoV-2 infections two days before SO. Wearable sensor technology is an easy-

to-use, low-cost method for enabling individuals to track their health and well-being during a 

pandemic. Our research shows how these devices, partnered with artificial intelligence, can 

push the boundaries of personalised medicine and detect illnesses prior to SO, potentially 

reducing virus transmission in communities. Future research should focus on how medical-

grade wearable sensor technology can aid in combatting the current pandemic by monitoring 

sensor data.
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Table 1. Overall participant characteristics stratified according to whether they contracted COVID-19

* indicates p≤ 0002, significant difference with Bonferroni correction

Variables Total 

n=1163

COVID-19 

n=127

No COVID-19

 n=1036

Test 

Statistic

Significance 

(p value)

Sex ratio (F:M) 667:494 74:53 594:441 (4)=040𝜒2 0982

Mean age, years (SD) 4408 (557) 4366 (564) 4414 (556) F(1, 

1071)=059

0444

BMI, kg/m2 (SD) 2472 (397) 2474 (400) 2472 (397) F(1, 

1071)=002

090

Smoking status, N 
(never: current: past 

smoker)

654:110:102 93:10:12 561:100:90 (2)=238𝜒2 0304

N of household 
contacts with 
COVID-19

111 53 58 (1)=12794𝜒2 <00001*

N of work colleagues 
with COVID-19 

279 49 230 (3)=273𝜒2 <00001*
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Table 2. Clinical characteristics of participants who contracted COVID-19 stratified according to whether 
they did (compliant group) or did not (non-compliant group) wear the bracelet regularly

Variables (n) Compliant 
group (n=66)

Non-compliant 
group (n=61)

Test statistic Significance 

(p value)

Sex ratio (F:M) 45:21 29:32 (1)=474𝜒2 0030

Mean age, years (SD) 4288 (559) 4454 (560) F(1, 116)=285 0094

BMI, kg/m² (SD) 2375 (369) 2581 (406) F(1, 116)=1039 0002*

Hospitalization rate 3 7 (1)=064𝜒2 0425

Smoking status, N
(never: current: past 
smoker)

57:4:5 36:6:7 (2)=303𝜒2 022

N of household 
contacts with COVID-
19

35 18 (1)=239𝜒2 0123

N of work colleagues 
with COVID-19

28 21 (1)=0𝜒2 1

COVID-19 symptoms:

Fever 17 23 (1)=089𝜒2 0344

Chills 14 11 (1)=062𝜒2 0432

Cough 26 30 (1)=025𝜒2 0616

Runny nose 26 25 (1)=001𝜒2 0938

Difficulty breathing 11 10 (1)=039𝜒2 0530

Loss of the sense of 
smell

26 24 (1)=037𝜒2 0543

Loss of the sense of 
taste

20 22 (1)=002𝜒2 0896

Chest pressure 7 10 (1)=022𝜒2 0636

Sore throat 18 19 (1)=000𝜒2 1

Muscle pain 27 32 (1)=029𝜒2 0593

Headache 44 29 (1)=788𝜒2 0005

Fatigue 27 38 (1)=224𝜒2 0135
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Variables (n) Compliant 
group (n=66)

Non-compliant 
group (n=61)

Test statistic Significance 

(p value)

Malaise 19 25 (1)=018𝜒2 0670

Diarrhoea 13 13 (1)=002𝜒2 0896

Sickness 9 5 (1)=129𝜒2 0256

Vomiting 1 5 (1)=189𝜒2 0169

Hospitalization 3 7 (1)=064𝜒2 0425

Long-term effects of 
COVID-19 (≥10d)

5 15 (1)=569𝜒2 0017

Mean symptom 
duration

854 (510) 1016 (1098) F(1, 116)=131 0254

* indicates p≤ 0002, significant difference with Bonferroni correction

Page 24 of 41

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Table 3. Multi-level linear mixed models reveal the relationship between COVID-19 phases and physiological parameters

Predictors Respiratory rate Heart rate Heart rate 
variability 
(SDNN1)

Heart rate 
variability 
(RMSSD2)

Heart rate 
variability ratio

 Wrist skin 
temperature

Skin perfusion

Intercept 1510† (0.26) 5543† (0.83) 5964† (1.43) 4371† (1.16) 050† (0.02) 3532† (0.06) -001† (000)

COVID-19 phase
Baseline Reference group Reference group Reference group Reference 

group
Reference 
group

Reference 
group

Reference group

Incubation 002 (006) 087† (029) -148* (059) -037 (048) -001* (001) 013† (004) 000 (000)

Pre-
Symptomatic

014 (012) 100† (036) -170* (064) -075 (053) -002* (001) 018† (005) 000 (000)

Symptomatic 100† (018) 215† (048) −145* (073) 012 (051) 000 (001) 030† (005) 000 (000)

Recovery 010 (006) 087† (022) -092 (051) 004 (044) 000 (001) 020† (003) 000 (000)

Unstandardized β -coefficient values reported, with standard errors in brackets.
Note: *, † refer to p< 005, 0007, respectively, with Bonferroni correction.
1SDNN: standard deviation of the NN interval.
2RMSSD: root mean square of successive difference. 
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Table 4. Performance metrics of the algorithm in the detection of COVID-19 two days prior to symptom onset
Class 1 represented an 8-day long training instance extracted from day 10 to day 2 before SO. Class 0 represented a training instance extracted from all other 8 days 
long consecutive measurements (e.g., SO-11 to SO-3). The training set consisted of 40 days measurements from 66 participants with 70:30 train-test split. Sensitivity 
is reflected in the recall of class 1, while specificity is determined by the recall of class 0.

Sample Class Precision Recall F-Score
0 0.60 0.45 0.51

Training Set
1 0.60 0.73 0.66
0 0.50 0.36 0.42

Test Set
1 0.54 0.68 0.60
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Figure Legends

Figure 1. 

COVI-GAPP participants (n=1163) wore a certified medical device at night while they slept, 

syncing it to a complementary smartphone application upon waking. The device and app were 

originally designed for fertility tracking in naturally menstruating women but adapted for the 

purposes of this study. Instead of real-time fertility indications, participants saw “Fertility 

Unknown” upon syncing (A). Additionally, the in-app Daily Diary asked participants about 

potential confounds (B) and COVID-19 symptoms (C) rather than fertility-related questions.

Figure 2.

Recurrent Neural Network (RNN) architecture for the detection of a pre-symptomatic case of 

COVID-19. The RNN consisted of two hidden layers and one output layer. The first hidden layer 

contained 16 and second layer contained 64 long short-term memory (LSTM) units. The LSTM 

output activation was a sigmoid function, while the recurrent activation on hidden layers was 

the ReLU (Rectified Linear Unit) function. The input of RNN was 8 consecutive values of 

physiological signal originating from 8 consecutive nights of data. The output was an indication 

about the potential COVID-19 infection.

Figure 3. 

Class depiction based on the recurrent neural network (RNN). Here, class 0 represents healthy 

days and class 1 represents the pre-symptomatic phase of COVID-19 (SO-10 to SO-2). Vectors of 

marked classes represent training input for the RNN. 

Figure 4. 

Study flowchart. From 2170 GAPP participants, 1163 participants were enrolled in the COVI-

GAPP study. 127 participants presented laboratory-confirmed COVID-19 disease and from 

these, a total of 66 positive tested participants had complete bracelet data available used for 

the algorithm development. 
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Figure 5. 

The wearable device can detect changes in 5 physiological parameters across the clinical course 

of COVID-19. The values of each physiological parameter (with 95% CIs) collapsed across 

individuals (n=66) were normalized using baseline measurements and are shown centred 

around participant-reported symptom onset (SO).
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GAPP participants 
 

n = 2170 

 
Complete bracelet data 

set available  
(i.e., 28 days from 

baseline) 
 

n=66 
 

 

COVI-GAPP participants 
 

n=1163 
 

 
Incomplete bracelet data 

 
 
 
 

n=61 

Laboratory-confirmed COVID-19 
 

n=127 

Exclusion of missing data: 

- Participants who did not wear their Ava bracelet preceding their 
COVID-19 diagnosis; n=30 

- Participants who never paired their bracelet to the ava app; n=8 
- Participant with hormone therapy; n=1  
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Respiratory rate (RR) 

Heart rate (HR) 

Heart rate variability (SDNN) 

Heart rate variability ratio 

Wrist skin temperature (WST) 

Legend 
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Supplementary Materials 
 

Supplement to: “Investigation of the use of a sensor bracelet for the pre-

symptomatic detection of COVID-19: An interim analysis of a national cohort 

study (COVI-GAPP)”. 
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Supplementary Material and Methods 

 

Our primary aim was to understand how the coronavirus disease 2019 (COVID-19) affects physiological parameters 

measured by a wearable device and, subsequently, whether these parameter changes could help in detecting a pre-

symptomatic infection. In particular, we investigated how heart rate (HR), respiratory rate (RR), heart rate variability 

(HRV), wrist-skin temperature (WST), and skin perfusion deviated from baseline measurements during four 

infection-related periods: the incubation period, the pre-symptomatic period, symptomatic infection period, and the 

recovery period. We categorized daily parameter measurements as occurring in the baseline period if the day (d) was 

more than 10 days prior to symptom onset (SO; i.e., d>SO-10). Relatedly, we defined the incubation period as SO-

10≤d<SO-2 and the pre-symptomatic period as SO-2≤d<SO. Because participants’ reported symptom duration 

varied, measurements fell into the symptomatic infection category if SO≤d≤SE. Finally, parameters collected after 

symptom end (SE) were classified as in the recovery period (i.e., d>SE).  

 

 

The Wearable Device and Physiological Parameter Specification 

 

The Ava Fertility Tracker (version 20; Ava AG, Switzerland) is an United States Food and Drug Administration 

(FDA) cleared and conformité européenne (CE) certified fertility aid bracelet that complies with international 

regulatory requirements and applicable standards.1,2 The wrist-worn tracker consists of three sensors: a temperature 

sensor; an accelerometer; and a photoplethysmograph (PPG).3 The Ava-bracelet saves data every 10 seconds and 

requires at least four hours of relatively uninterrupted sleep to record enough data for pre-processing and analysis. 

Upon waking, the user taps a button in the complementary smartphone app to initiate the previous night’s raw data 

transfer from the Ava-bracelet to the system’s backend database via Bluetooth Low Energy (BLE). The data then 

undergoes pre-processing according to proprietary manufacturer algorithms to remove potential artifacts, detect the 

user’s sleep stages, and identify nightly physiological parameters. In addition to the algorithm-derived fertility 

indication, the post-processing values for HR, WST, RR, sleep quantity, sleep quality, and HRV ratio are then sent 

back to the complementary app and displayed to the user. The device’s sensors responsible for recording the raw 

data are described in detail below as well as show in Figure S1. 

Built into the Ava-bracelet’s internal hardware, the accelerometer detects and records the wearer’s movement in 

three-dimensional space. A proprietary machine learning algorithm ingests nightly movement data to determine sleep 

stages. In addition to reporting the user’s duration of sleep in-app, it also assigns her a nightly sleep quality score 

consisting of the percentage of combined deep and Rapid Eye Movement (REM) sleep. Although other researchers 

have examined COVID-19’s impact on sleep using wearable devices with mixed or inconclusive results4–7, since 

sleep quality and quantity were not among our pre-defined primary objectives we did not analyse results from the 

accelerometer data.  

A temperature sensor constitutes the Ava-bracelet second sensor and provided data for evaluating COVID-19 related 

changes in wrist skin temperature (WST). Despite the device reading temperature at a distal point compared to core 

body temperature, recent research has demonstrated the Ava-bracelet’s ability to continuously measure temperature 

throughout the night results in more sensitive readings than oral point estimates and enables its machine learning 

algorithms to detect more ovulation-related changes in temperature.8 These findings suggest the medical grade 

device’s ability to sense fluctuations in WST related to an infection would similarly benefit from its repeated 

sampling over the course of sleep and may outperform an oral or forehead reading taken only once at point of care 

(POC). Limited evidence conducted early on during the COVID-19 pandemic attests to WST’s potential superior 

usage in detecting infection-based fluctuations; WST for 528 patients read by a noncontact infrared thermometer 

proved more stable and less prone to environmental factors (e.g., walking or bicycling to POC) than tympanic and 

forehead measurements in some contexts. Thus, given prior research on the Ava-bracelet’s measurement accuracy 

compared to oral temperature and on WST’s importance in triaging COVID-19 patients, we relied on the device’s 

temperature sensor to provide nightly WST readings for analysing how temperature changes across a symptomatic 

SARS-CoV-2 infection.   

A PPG comprises the Ava bracelet’s final sensor. The PPG sensor employs a light emitting diode (LED) current to 

send infrared light through the user’s skin to detect inter-beat intervals (IBIs). The light reflects off or is absorbed 

by the blood; how much light bounces back to the sensor can signal the wearer’s current cardiac rhythms.9 Based on 

the time cadence for variance in the reflected light, proprietary algorithms can determine the user’s HR, RR, 
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perfusion and IBI; in turn, the IBI can inform calculations for various metrics of HRV. While HR consists of the 

number of heart beats per minute, HRV describes the fluctuation in time intervals between consecutive heartbeats.10 

It can vary in both frequency- and time-domains, resulting in more than 20 possible metrics for quantifying the 

heart’s activity.10 Since examining all HRV metrics would have proven practically and statistically infeasible, we 

focused on two time- and one frequency-domain measurements. The first time-domain measure of HRV, the standard 

deviation of the NN interval (SDNN), quantifies sympathetic and parasympathetic nervous system activity in ms; it 

describes how much variability exists in the interval between normal sinus beats.10 A lower SDNN corresponds to 

impaired cardiac health10, with recent research offering conflicting evidence about SDNN’s changes in COVID-19 

patients. While some studies demonstrated an increase in SDNN among COVID-19 patients11, others have found 

changes in SDNN dependent upon disease severity.12 Regardless of the effect’s direction, we expected an individual 

suffering from COVID-19 would exhibit deviations from their baseline SDNN during an active infection and 

included it in our analyses. A second time-domain measurement of HRV, the root mean square of successive 

differences (RMSSD), examines the variability between normal heartbeats. Increased RMSSD has previously been 

shown to be associated with severe infection, including septic shock and COVID-19.11,13 Thus, we focused on 

RMSSD changes across the incubation, pre-symptomatic, symptomatic and recovery phases compared to 

participants’ baseline measurements in our analysis. The final HRV parameter we examined, the HRV ratio, 

constitutes a frequency-domain measurement; it indicates the ratio of HR oscillations in the low-frequency (LF; 

004-015 Hertz [Hz]) to those in the high-frequency (HF; 015-04 Hz) bands10,14. Patients with severe COVID-19 

infection have exhibited a higher HRV ratio than mildly infected participants12, leading us to examine this 

physiological parameter in our analyses.  

 

 

Data Processing and Multi-level Model Specification 

We performed all data processing and analysis using R (R Core Team, v36115) and Python (Python Software 

Foundation, v3616). In keeping with data cleaning practices described by the manufacturer in previous publications,3 

we excluded the first 90 and the last 30 minutes of data from each night a priori from our analysis; transitions from 

waking to sleeping and vice versa can result in greater variation in physiological parameters measured by the Ava-

bracelet, thereby leading to less stable readings. To further reduce artificial fluctuations in the data due to potential 

measurement error and consistent with best practices17, each physiological parameter underwent locally estimated 

scatterplot smoothing (LOESS) prior to analysis. 

Next, we ran a series of multi-level models with random intercepts and random slopes to determine differences in 

physiological parameters during the infection-related periods compared to baseline, accounting for the nesting of 

repeated measurements during an infection period and within an individual. Given our continuous criterion, we used 

the “lme” function with residual maximum likelihood estimation (REML) and Satterthwaite degrees of freedom in 

the open-source R packages “lme4”18, “lmerTest”19, and “optimx”20 to model our outcomes of interest. Four dummy-

coded variables were created, indicating to which infection period a given measurement belonged (1= Belonging to 

that Period, 0=Not belonging to that period). The reference baseline period measurements were encoded as 0 across 

all four dummy variables. Our reported results include the unstandardized regression coefficients for each effect. 

When multiple models were possible for the same parameter, we chose the model using the percentile of data (stable 

maxima) with the best fit; we determined best fit by comparing the two models using an analysis of variance 

(ANOVA) test and selecting the model with the significantly lower Akaike Information Criterion (AIC). In instances 

where the models were not significantly different from each other, we chose the model that included more data (e.g., 

the 99% percentile of data versus the 90th percentile).  

In an effort to provide some context for the magnitude of our significant effects, we report the intraclass correlation 

coefficient (ICC) for each of the null models associated with changes in physiological parameters over the course of 

a COVID-19 infection. The ICC indicates how much variance in an outcome occurs due to between group 

differences21–23; in the context of the current study, the ICC presents a picture of how a given physiological parameter 

varies due to participant-level characteristics versus the within-subject course of a COVID-19 infection. 

To ensure a family-wise alpha level less than or equal to 05, we implemented a Bonferroni correction for the seven 

total parameters we analyzed and evaluated effect significance using this new level of p=007. We adjusted how we 

defined marginal significance accordingly (i.e., 007≤p≤05). We used the Bonferroni-corrected significance level 

throughout the paper.  
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Supplementary Results 

 
The ICCs and random effects variance estimates for each of the seven multi-level models can be found in Table S1. 

In brief, most physiological parameters had high levels of variance which could be attributed to between participant 

differences rather than within subject changes due to COVID-19 infection.  

For most physiological parameters, observed variance in the outcome resulted largely from a participant’s own 

stability in readings over time. All cardiac parameters showed similar ICCs, ranging from 071 (RMSSD) to 077 

(SDNN); this means that, depending on the parameter, 71-77% of the variance in outcome was due to between 

participant differences. Regardless of infection phase, a given participant’s nightly cardiac measurements were more 

similar to one another than random chance. RR showed an even higher ICC; 88% of all observed variance in RR 

was attributable to between participant differences. A maximum of 22% of variance could be due to within 

participant changes. The multi-level model testing the effect of infection phase on nightly RR reveals only a 

significant difference between the symptomatic period and baseline (see Table 3); all other phases do not differ 

significantly from baseline, illustrating the lack of overall variability due to a COVID-19 infection and emphasizing 

RR’s stability over time within an individual participant. 

On the other end of the spectrum, only wrist skin temperature and perfusion had low ICC’s (001 and 005, 

respectively); said differently, a given participant’s perfusion or temperature measurements over time were not more 

similar to each other than would be expected from a random selection of that same parameter across all participants. 

As perfusion did not show phase-based changes in COVID-19 infection (see Table 3), it may be that another 

unaccounted for factor contributes to outcome measurements. Neither the participant’s own repeated measurements 

nor the disease trajectory appear to significantly influence a given night’s perfusion data. In contrast, since wrist skin 

temperature significantly differed from baseline across all other phases of a COVID-19 infection (see Table 3), it 

appears that the disease itself contributes more to a given night’s temperature readings than the stability in a 

participant’s own repeated measurements; almost all of the observed variance in nightly skin temperature occurs due 

to within participant differences (e.g., changes in their physiology over the course of the infection). Examining ICC 

values for each physiological parameter of interest provides greater context into the relative effect of potential phase-

based changes in outcome variables as well as the residual variance attributable to the participant themselves. 

 
 

Supplementary Tables and Figures 

 
Supplementary Table 1. Intraclass correlation coefficients (ICCs) calculated based on the variance estimates for 

random effects of the null models predicting each of the seven physiological parameters of interest. 

 

Predictors 
Between Participant 

Variance (SD) 

Variance of the 

Residuals (SD) 
ICC 

Wrist Skin Temperature 034 (059) 3565 (597) 001 

Heart Rate 4359 (660) 1353 (368) 076 

Heart Rate Variability (SDNN) 12164 (1103) 3608 (608) 077 

Heart Rate Variability (RMSSD) 8208 (906) 3379 (581) 071 

Heart Rate Variability Ratio 116 (108) 040 (063) 074 

Respiratory Rate 448 (212) 064 (080) 088 

Skin perfusion 38 e-05 (001) 675 e-04 (003) 005 
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Supplementary Figure 1. The Ava Fertility Tracker contains three sensors (temperature, accelerometer and 

photoplethysmograph) that measure wrist skin temperature, heart rate, respiratory rate, heart rate variability and 

skin perfusion simultaneously.  

 

 

 

Study protocol  

 
The study protocol can be downloaded here. 
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 TITLE OR ABSTRACT    

  1 Identification as a study of diagnostic accuracy using at least one measure of accuracy 

(such as sensitivity, specificity, predictive values, or AUC) 
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 ABSTRACT    

  2 Structured summary of study design, methods, results, and conclusions  

(for specific guidance, see STARD for Abstracts) 
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 INTRODUCTION    

  3 Scientific and clinical background, including the intended use and clinical role of the index test 4 

  4 Study objectives and hypotheses 4 

 METHODS    

 Study design 5 Whether data collection was planned before the index test and reference standard  

were performed (prospective study) or after (retrospective study) 

5 

 Participants 6 Eligibility criteria  5 

  7 On what basis potentially eligible participants were identified  
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  9 Whether participants formed a consecutive, random or convenience series 5-9 

 Test methods 10a Index test, in sufficient detail to allow replication 6 
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of the index test, distinguishing pre-specified from exploratory 
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  13a Whether clinical information and reference standard results were available  

to the performers/readers of the index test 

NA 
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 Analysis 14 Methods for estimating or comparing measures of diagnostic accuracy 6 

  15 How indeterminate index test or reference standard results were handled 6 

  16 How missing data on the index test and reference standard were handled NA 
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 RESULTS    

 Participants 19 Flow of participants, using a diagram Figure 4 
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  21a Distribution of severity of disease in those with the target condition 10 

  21b Distribution of alternative diagnoses in those without the target condition 10 

  22 Time interval and any clinical interventions between index test and reference standard 10 

 Test results 23 Cross tabulation of the index test results (or their distribution)  

by the results of the reference standard 
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  25 Any adverse events from performing the index test or the reference standard NA 
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  26 Study limitations, including sources of potential bias, statistical uncertainty, and 

generalisability 

15 
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STARD 2015 

AIM  

STARD stands for “Standards for Reporting Diagnostic accuracy studies”. This list of items was developed to contribute to the 

completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative 

study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts 

submitted for publication.  

EXPLANATION 

A diagnostic accuracy study evaluates the ability of one or more medical tests to correctly classify study participants as having 

a target condition. This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the 

future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a 

combination of these, or any other method for collecting information about the current health status of a patient. 

The test whose accuracy is evaluated is called index test. A study can evaluate the accuracy of one or more index tests. 

Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index 

test results with those of the reference standard. The reference standard is the best available method for establishing the 

presence or absence of the target condition. An accuracy study can rely on one or more reference standards. 

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the 

reference standard can be used to estimate the sensitivity of the index test (the proportion of participants with the target 

condition who have a positive index test), and its specificity (the proportion without the target condition who have a negative 

index test). From this cross tabulation (sometimes referred to as the contingency or “2x2” table), several other accuracy 

statistics can be estimated, such as the positive and negative predictive values of the test. Confidence intervals around 

estimates of accuracy can then be calculated to quantify the statistical precision of the measurements. 

If the index test results can take more than two values, categorization of test results as positive or negative requires a test 

positivity cut-off. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) 

curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The 

area under the ROC curve informs in a single numerical value about the overall diagnostic accuracy of the index test.  

The intended use of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The 

clinical role of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, 

replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.  

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical 

tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was 

not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.  

DEVELOPMENT 

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, 

researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would 

help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of 

conclusions and recommendations. The list represents an update of the first version, which was published in 2003.  

 

More information can be found on http://www.equator-network.org/reporting-guidelines/stard. 
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